
WORK BREAKDOWN STRUCTURE

&

TASKING DESCRIPTION

Table Of Contents
TENA PROJECT TASK STATEMENT...1-1

PROJECT DESCRIPTION ...1-1

WORK BREAKDOWN STRUCTURE TASKING DEFINITION.................................1-2

1. PROJECT MANAGEMENT..... 1-

1.1. PROJECT PLANNING 1-

1.1.1. ON LINE SERVICES PLANNING 1-

1.1.1.1. ON-LINE SERVICES STUDY .1-

1.1.1.2. ON-LINE SERVICES IMPLEMENTATION. 1-

1.1.1.3. ON-LINE SERVICES MANAGEMENT 1-

1.1.2. REQUIREMENTS PROCESS PLANNING 1-

1.1.3. ARCHITECTURE PROCESS PLANNING. 1-

1.1.4. TRANSITION PROCESS PLANNING. 1-

1.2. PROJECT CONTROL. 1-

1.3. PROJECT REPORTING. 1-

1.3.1. PROJECT MANAGEMENT PLAN 1-

1.3.2. MONTHLY REPORTS 1-

1.4. USER ADVOCACY AND PROPONENCY. 1-

1.4.1. TENA BRIEFINGS SCHEDULING. 1-

1.4.2. TENA CONSORTIUM.. 1-

1.5. FINANCIAL MANAGEMENT 1-

2. ARCHITECTURE DEFINITION 1-

2.1. DEFINE TENA STEP I. 1-

2.1.1. IDENTIFY DOMAIN I: 1-

2.1.1.1. IDENTIFY INFORMATION SOURCES. 1-

2.1.1.1.1. IDENTIFY VISIONARY SOURCES 1-

2.1.1.1.2. IDENTIFY NETWORKING SOURCES 1-

2.1.1.1.3. IDENTIFY APPLICATIONS SOURCES.1-

2.1.1.1.4. IDENTIFY BUSINESS SOURCES 1-

2.1.1.1.5. IDENTIFY RELATED ARCHITECTURE SOURCES 1-

2.1.1.1.6. LIST OF INFORMATION SOURCES 1-

2.1.1.2. GATHER INITIAL DOMAIN KNOWLEDGE 1-

2.1.1.2.1. GATHER VISIONARY KNOWLEDGE. 1-

2.1.1.2.1.1. APPLICATIONS CONCEPT DOCUMENT 1-

2.1.1.2.2. GATHER NETWORKING KNOWLEDGE. 1-

2.1.1.2.3. GATHER APPLICATIONS KNOWLEDGE. 1-

2.1.1.2.4. GATHER BUSINESS PROCESS KNOWLEDGE 1-

2.1.1.2.5. GATHER RELATED ARCHITECTURE KNOWLEDGE 1-

2.1.1.3. DOMAIN KNOWLEDGE CATALOG 1-

2.1.1.4. DESCRIBE THE DOMAIN 1-

2.1.1.5. VERIFY DOMAIN DESCRIPTION 1-

2.1.2. SCOPE DOMAIN 1-

2.1.2.1. ESTABLISH SCOPING CRITERIA 1-

2.1.2.2. DEFINE DOMAIN BOUNDARIES 1-

2.1.2.3. VERIFY DOMAIN SCOPE 1-

2.1.2.3.1. DOMAIN SCOPE REPORT 1-

2.1.3. ANALYZE DOMAIN 1-

2.1.3.1. ORGANIZE & SYNTHESIZE PROBLEM SPACE INFORMATION 1-

2.1.3.1.1. ORG. & SYN. NETWORKING REQUIREMENTS 1-

2.1.3.1.2. ORG. & SYN. APPLICATIONS REQUIREMENTS 1-

2.1.3.1.3. ORG. & SYN. BUSINESS PROCESS REQUIREMENTS 1-

2.1.3.1.3.1. REQUIREMENTS DOCUMENT 1-

2.1.3.1.4. DETERMINE REQUIREMENTS TRACEABILITY 1-

2.1.3.1.4.1. TRACEABILITY MATRIX 1-

2.1.3.1.5. DETERMINE REQUIREMENTS BENEFITS 1-

2.1.3.1.5.1. RELATIVE BENEFITS STUDY DOCUMENT 1-

2.1.3.1.6. VERIFY REQUIREMENTS 1-

2.1.3.1.6.1. DOMAIN REQUIREMENTS STEP 1 DOCUMENT. 1-

2.1.3.2. IDENTIFY COMMONALTIES 1-

2.1.3.2.1. IDENTIFY OBJECTS & THEIR BEHAVIORS(Relationships) 1-

2.1.3.2.2. DETERMINE BEHAVIORS 1-

2.1.3.2.3. IDENTIFY CONSTRAINTS 1-

2.1.3.2.4. DEVELOP DOMAIN COMMON OBJECTS MODEL 1-

2.1.3.2.5. VERIFY DOMAIN COMMON OBJECTS MODEL 1-

2.1.3.3. DETERMINE COMMON OBJECTS ADAPTATION REQUIREMENTS 1-

2.1.3.4. VERIFY DOMAIN MODEL. 1-

2.1.4. DEFINE DOMAIN ARCHITECTURE (TENA) 1-

2.1.4.1. SELECT STANDARDS/PROTOCOLS 1-

2.1.4.2. DEFINE APPLICATIONS FRAMEWORK 1-

2.1.4.3. VALIDATE TENA 1-

2.1.4.3.1. DEVELOP INTEGRATED VALIDATION PLAN 1-

2.1.4.3.2. INSPECT/REVIEW COMPONENT VALIDATIONS . 1-

2.1.4.3.3. SIMULATE INTEGRATED TENA 1-

2.1.4.3.4. PROTOTYPE INTEGRATED TENA 1-

2.2. DEFINE TENA STEP II.1-

2.3. DEFINE TENA STEP III. 1-

3. TRANSITION PLANNING 1-

3.1. DEFINE TRANSITION PROCESS 1-

3.2. DEVELOP USER’S GUIDE. 1-

3.2.1. BUSINESS MODEL DRAFT. 1-

3.2.2. BUSINESS MODEL FINAL 1-

3.3. CTEIP TRANSITION 1-

3.3.1. DEMONSTRATION ASSETS DRAFT 1-

3.3.2. DEMONSTRATION ASSETS FINAL 1-

3.4. TENA IMPLEMENTATION PLAN 1-

3.4.1. ROADMAP DRAFT. 1-

3.4.2. ROADMAP FINAL. 1-

APPENDIX A ACRONYMS..A-xx

APPENDIX B DEFINITIONS...B-xx

APPENDIX C REFERENCES AND SUGGESTED READINGS....C-xx

APPENDIX D HOW TO READ IDEF DIAGRAMS...D-xx

APPENDIX E TENA IDEF DIAGRAMS...E-xx

APPENDIX F TOOL OVERVIEW...F-xx

APPENDIX G SYSTEM QUESTIONNAIRE..G-xx

TENA PROJECT TASK STATEMENT

PROJECT DESCRIPTION:

There is an increasing need to prepare for a significantly expanded capability to transfer various
types of information in near-real time between geographically separated test and training
locations in order to test modern weapon systems or provide for realistic training Activities. The
Test and Training ENabling Architecture (TENA) Project will define an architecture and
facilitate a structure to enable the 21st Century capability for this information transfer within the
T&E and Training communities.

TENA will identify and/or develop the standards, protocols and network attributes necessary to
develop and demonstrate a concept that meets the T&E and Training needs within a system that

can achieve the communications, connectivity and interoperability in the most economical and
effective manner, and to enable increased use of modeling and simulation as valid T&E
techniques within the Major Range and Test Facilities Base (MRTFB). TENA will entail
concepts that foster an open-system architecture, use advanced digital electronics developments,
and exploit distributed interactive simulation techniques and commercial-off-the-shelf
technologies, where applicable.

The Navy is the CTEIP Resource Manager for this project, and will establish a joint project
office for the management of the project Activities. This project office will be the principle point
of contact for the T&E and Training communities for matters related to information transfer,
networks, interconnectivity and interoperability.

The architecture defined will be domain-specific to promote application interoperability and
asset sharing in both the T&E and Training domains within reasonable technical, cost and
schedule constraints. The architecture should be consistent with the DoD High Level
Architecture (HLA) currently under development by the Defense Modeling and Simulation
Office (DMSO).

The TENA project is a two-year, process-based project. Therefore, an overall project process
definition will be developed by the Project Management Office (PMO) as a project road map.
The elements of this process definition are defined by the TENA core team. In addition, a
process for execution of each task area will be developed by the Integrated Project Teams (IPTs)
and followed during the life of the TENA project. The TENA project will use the Defense
Information Systems Agency (DISA) Domain Engineering Process as the basic process for
developing the architecture. This technique provides a three-step evolution for the architecture
definition and will integrate well with the IPT developed processes.

The TENA Project has been divided into three top-level task areas; Project Management,
Architecture Definition and Transition Planning. Six IPTs were created to support these top level
task areas. The Army is assigned task leadership and IPT responsibility for the Applications
concept and Concept Validation tasks. The Navy is responsible for the PMO, and is IPT lead for
Architecture Definition and Requirements. The Air Force has the IPT responsibility for
Transition Planning. Task statements and a Work Breakdown Structure (WBS) are supplied
below for these task areas. Service team members will be expected to support tasks other than
those specifically identified as the lead tasks.

Work Breakdown Structure Tasking Definition:

1. PROJECT MANAGEMENT -- The Test & Training ENabling Architecture (TENA)
project management team lead by Mr. Ed Dunn - Naval Undersea Warfare Center
(NUWC), is responsible for planning, controlling and executing the TENA project.

1. PROJECT PLANNING -- The TENA project management team is responsible
for the planing and controlling of the project Activities as described in the TENA
project work breakdown structure (WBS). The key Activities include planning

schedules, on-line communications management and requirements, architecture
and transition planning. The TENA project office will use project management
software to monitor and control the progress of the project.

1. ON LINE SERVICES PLANNING -- Since the TENA project is based
in a virtual office environment with IPTs located on different regions of
the United States, on-line services is of critical bearing for the success of
TENA. The goal is to have readily access to databases, decision support
systems, object repository, library services, presentations and briefs,
administrative proceedings and project coordination.

1. ON-LINE SERVICES STUDY -- The TENA project
management office will conduct a survey to determine the optimal
solution that will meet the team on-line requirements.

2. ON-LINE SERVICES IMPLEMENTATION -- The TENA
management office will implement the chosen on-line service
solution and will train if necessary the rest of the team.

3. ON-LINE SERVICES MANAGEMENT -- It is the
responsibility of the TENA project management team to maintain
the on-line services.

2. REQUIREMENTS PROCESS PLANNING - Requirements
development is the initial key area for the TENA project. The TENA must
be based upon valid and derived service requirements as well as the latest
technology developed in government and industry. The development of
these requirements is critical to the success of the overall project. The
TENA project has identified two categories of requirements. Category I
represents requirements based on known networking needs which
currently exist or are planned at the various T&E and Training facilities.
Category II involves requirements based on the collection of applications
concepts. All services will support the task of requirements collection
which will be lead by Mr. Brad Ennen of Naval Air Warfare Center, China
Lake, CA.

3. ARCHITECTURE PROCESS PLANNING -- This task area consists of
evolving the TENA architecture based on the TENA requirements and
other associated DoD architecture Activities. The Navy has the IPT lead
for architecture development and Mr. Ed Dunn of the Naval Undersea
Warfare Center is assigned as the IPT leader. Deliverables from the
architecture development task area are: architecture development process
draft, demonstration and final TENA architecture reports.

4. TRANSITION PROCESS PLANNING -- As required by the TENA
sponsor the Central Test & Evaluation Investment Program (CTEIP), a
transition plan will be developed to transfer the TENA concept to a
Service or DoD Agency for implementation once demonstrated and

approved. The plan should define an appropriate transition point,
estimated costs for sustaining efforts, documentation and approvals
needed prior to the transition. The Transition activity focuses on
packaging and documenting ideas in such a way that it can be used by
follow-on programs.

2. PROJECT CONTROL -- The TENA PM will exercise control over the project
to ensure success. Particular attention should be given to milestones and
schedules, budget, deviations from project baseline, goals, procurement needs or
resources.

3. PROJECT REPORTING -- As required by the CTEIP, the TENA project
manager is in charge of the creation and update of the project reports. These
include, the Project Management Plan, CTEIP Monthly Status Report, Financial
and Progress Reports. The project manager will collect appropriate feedback from
the deputies as needed in order to create these reports.

1. PROJECT MANAGEMENT PLAN -- The TENA project manager, Mr.
Ed Dunn, has the responsibility to write and to review the Project
Management Plan. Standard CTEIP procedures will be followed.

2. MONTHLY REPORTS -- The TENA project manager, Mr. Ed Dunn,
has the responsibility to provide monthly CTEIP financial and progress
reports. These reports will comprise of up-to-date information gathered
from reports due from the IPT leaders. Standard CTEIP procedures will be
followed.

4. USER ADVOCACY AND PROPONENCY -- A key to success of any new
system or idea is the acceptance by the user who will ultimately determine its
success or failure. In order to achieve user acceptance it is important to collect
and answer user concerns and when possible incorporate user ideas. This activity
will serve to first, educate the user about TENA and its potential benefits, and
then collect and incorporate user feedback.

This activity will serve to educate potential users as to what TENA is and the
potential applications which can be realized by linking training and test facilities.
The draft Applications document will be distributed and a representative briefing
prepared for use in this activity. Trips and teleconferences will be required for this
activity; however, these trips will be consolidated as much as possible with other
TENA data collection activities.

1. TENA BRIEFINGS SCHEDULING - There are a number of other DoD
architectural-related Activities which are engaged in work which could
impact TENA or which should be influenced by the TENA requirements.
The TENA project office is responsible for coordinating the TENA team
participation in those Activities to the extent necessary to insure the
interests of the TENA community are represented. In addition, these

meetings and conferences are considered to represent cost-saving
opportunities for interacting with the organizations and individuals which
have inputs to the TENA effort. The TENA project office will publish an
on-line calendar with future briefings schedules.

2. TENA CONSORTIUM -- The TENA Consortium will comprise a group
of T&E and Training representatives who will bring essential information
regarding requirements, validation, implementation and transition of the
TENA. This group could represent future TENA compliant users and as
such, their involvement is highly beneficial for the success of the project..

5. FINANCIAL MANAGEMENT -- The TENA project office will be responsible
for all financial management of the project to the highest level.

2. ARCHITECTURE DEFINITION -- The TENA project will define a domain-specific
architecture to promote application interoperability and asset sharing in both the T&E and
Training domains within reasonable technical, cost and schedule constraints. A
fundamental principle in formulating TENA should be that of adopting and reusing all
appropriate DoD, Service and commercial standards, protocols and architecture
guidelines. The architecture should be consistent with the DoD High Level Architecture
(HLA) currently under development by the Defense Modeling and Simulation Office
(DMSO). To this end, the TENA Project Office will closely monitor the progress and
evolution of DMSO HLA efforts. In addition, the TENA architecture should be
maximally compatible with the Service’s major C4I initiatives to the extend practicable.
For these reasons, it is of paramount importance that a requirements analysis is conducted
so as to focus the effort toward those key interoperability opportunities with the greatest
valued-added potential to meet validated requirements. The architecture should be driven
by validated requirements, however because of the rapidity in the expansion of both
technical capabilities for and applications of information interconnectivity, current
requirements must be modified by prudent projections of future needs to ensure the
architecture is not obsolete by the time it can be implemented, in the TENA project this is
called Applications concepts.

The TENA project will follow the Defense Information Systems Agency (DISA) Domain
Engineering Approach to define the architecture. This is a three-step approach in which
iterations are made in order to optimize the final product.

1. DEFINE TENA STEP I -- Early in the program, the architecture team will
collect data from the Requirements and Applications Concept teams in order to
develop one or more notional or draft architectures. Although requirements
collection and analysis will not be complete at this point, the production of draft
architectures will test the development process, including human and software
tool interfaces. The draft architectures should identify major issues to further
focus subsequent efforts. The team must be careful to avoid placing too much
effort on the content of these first architectures, accepting that they may change
dramatically. The focus must remain on process and early identification of risk
areas.

1. IDENTIFY DOMAIN I -- The goal of this process is to compile essential
criteria that will be used to scope and select an initial target domain on
which to focus initial analysis and design efforts. This activity identifies
and describes the technical conditions used specifically to help focus
initial analysis efforts in a domain with a very broad scope. The analysis
efforts must be structured to focus initial activities on available
information, while adhering to the initial conditions set for conducting the
analysis. Before analyzing the domain, it is essential that analysts acquire
a general understanding of the domain. To accomplish this, information
about the domain is collected in the following subprocesses:

• Identify information sources,

• Gather initial domain knowledge,

• Describe the domain, and

• Verify domain description.

1. IDENTIFY INFORMATION SOURCES -- The goal of this
process is to identify reliable domain expertise and documentation
resources that will be beneficial in formulating an understanding of
the domain. Domain resources will be used in various process
activities for: soliciting, collecting and extracting relevant domain
information; developing and verifying domain models and other
valuable sources of domain information.

 Description:

To conduct an effective domain analysis, reliable sources
of information relevant to the domain must be identified and
consulted. Domain analysts identify sources of domain information
and extract the domain data from these sources to formulation
understanding of the domain, leading to the development of useful
domain products. The domain analyst’s perception of system
behavior in the domain is dependent upon the reliability of
these information sources.

The information sources which contribute to the TENA
program can be grouped into five areas: Visionary Sources
(2.1.1.1.1), Networking Sources (2.1.1.1.2), Applications Sources
(2.1.1.1.3), Business Process Sources (2.1.1.1.4), and Related
Architecture Sources (2.1.1.1.5). Lower-level activities of "Identify
Information Sources" may be assigned to be executed by different
portions of the TENA team, however each will follow the overall
process as described below. There are different types of
information sources available to domain analysts including:
domain experts, requirements specifications, system

documentation, independent research, training materials and
classes, and related seminars. Domain experts, requirement
specifications and functional process improvement information
models are probably the best sources of domain information.
Domain experts may be individuals that define requirements for
developers, users or maintainers of the domain's systems. Domain
experts can also be used in the domain analysis process to validate
the analyst's perception of the domain. The domain analyst
compiles and maintains a contacts list that identifies potential
domain experts and a list of the possible systems documentation
and other information for consideration during the domain analysis
process.

1. IDENTIFY VISIONARY SOURCES -- This survey
addresses future programs and future training and test
concepts which apply to interoperability. A number of
meetings, teleconferences, and workshops will be attended
and TENA-like interoperability ideas collected. These
requirements will be predominately from organizations,
and other high level panels such as the Defense Science
Board.

2. IDENTIFY NETWORKING SOURCES -- This survey
addresses networking sources across the T&E and Training
community.

3. IDENTIFY APPLICATION SOURCES -- This process
will identify potential applications concepts sources across
the T&E and Training community. Application Concepts is
fundamental to developing TENA. The process will consist
of identifying and compiling a set of application concepts
which represent beneficial value to the various
communities to be served by TENA. There are three such
communities whose interests must be considered and who
can provide useful application concepts:

1. The Testing community

1. The Training Community

1. The RD&A [Spell out] Community

We also believe that a systematic approach to developing application concepts is
appropriate. This will be conducted in parallel with the process of collecting ideas
from the above mentioned communities. This approach will be to locate (or develop if
necessary) a taxonomy of resources at the various facilities and then systematically
consider the networking requirements and architectural implications associated with
sharing each category of resource. Next, the application concepts compiled from

canvassing the communities will be analyzed and the resulting implications folded
into the systematic analysis of sharing resources. Finally, at the completion of this
process, both economic and useability analysis will be performed, leading to a final
document which highlights the requirements which are most likely to impact the
architecture.

1. IDENTIFY BUSINESS SOURCES -- This process will
identify potential business sources across the T&E and
Training community.

2. IDENTIFY RELATED ARCHITECTURE SOURCES -
- This process will identify potential architecture sources
across the T&E and Training community.

3. LIST OF INFORMATION SOURCES -- As potential
sources are identified, a list will be created for traceability
and for analysis purposes to include visionary, networking,
application, business, and related architecture sources.

1. GATHER INITIAL DOMAIN KNOWLEDGE -- The goal of
this process is to begin the collection of domain information from
the information sources identified in 2.1.1.1.6, this will be used to
develop an initial understanding of the domain of interest and as
input to prepare a description of the domain in an appropriate level
of detail.

Description:

In this process, the domain analysts define an initial set of information
requirements that will facilitate their high-level perception of the domain based on
characteristics associated with systems in the domain. Solicited high-level
information applicable to the domain may consist of the following:

• Business Models,

• Brief System Descriptions,

• System Capabilities,

• Available Domain Models and Domain-Specific Software Architecture (s)
(DSSAs),

• Identifiable Common Systems Patterns,

• Operational Environment,

• External Interfaces,

• Systems with similar capabilities,

• Known Reuse Opportunities, and

• Available system documentation.

 In general, information extracted from domain sources should concentrate on
what systems in the domain do (i.e., system capabilities and functionality), not how
system capabilities are implemented. This is particularly true for initial data
gathering. However, as domain analysis efforts proceed to lower-level detail,
implementation of systems capabilities may provide alternative solutions to solve a
common problem in the domain and should be noted in the Domain Knowledge Base.

Activities:

 The activities below will be conducted by the TENA team and will be recorded
in the Domain Knowledge Catalog (2.1.1.3). These key activities can be conducted
concurrently.

• Use existing knowledge from previous and on-going analysis efforts,
whenever possible, from a Domain Knowledge Base. Extract qualified
domain analysis products from a reuse repository.

• Use the system questionnaire contained in Appendix **** for recording
information gathered from contacts and program management offices.

• Distribute system questionnaires or conduct interviews with domain
experts (such as, Program Executive Office (PEO), Technical Integration
Manager (TIM), Functional Activity Program Manager (FAPM), and
software developers) for initial system data.

• Collect initial questionnaire and survey responses from domain experts
and verify data. Additional documentation and domain experts may be
uncovered during these activities. As required, the source list should be
updated to reflect changes.

• Develop a Domain Knowledge Catalog in an indexed format showing all
relevant domain information needed to conduct the domain analysis effort.
This catalogue depicts the sources type and the types of the documents
found during the fact finding process. This catalogue includes pointers to
or addresses of domain documentation, questionnaires and interviews with
Domain Experts, and potential reusable assets from a reuse repository.

• Attend system development reviews and coordinate with current projects’
documentation distribution activities.

• Identify support documentation and other domain information to be used
in further analysis activities.

• Gather relevant information from other possible sources such as the
library, technical seminars/classes, and independent research.

• Collect the Business Process Model (IDEF0) .

• Identify and gather high-level system interface and architecture data.

• Acquire information needed for the domain analysis and do a preliminary
or high-level first-cut analysis. Concentrate on what systems should do,
not how they do it.

• Provide a Domain Engineering orientation for domain experts, and explain
the purpose and goals for conducting domain engineering.

• Start a filing system to keep all information in a central location, the
Domain Knowledge Base.

• Identify problems in the domain sources and initiate process improvement
in the form of feedback to streamline the Identify Information Sources
process.

• Use the feedback identified in Scope Domain (2.1.2) to incorporate any
lessons learned, anomalies or discrepancies discovered during the scoping
effort.

• Develop system criteria that will be used to partition and group systems in
the domain, according to obvious commonalities, for the domain analysis
effort.

1. GATHER VISIONARY KNOWLEDGE -- Visionary
information will be collected during this process and will
be compiled in the Domain Knowledge Catalogue.

1. APPLICATIONS CONCEPT DOCUMENT --
This document will contain a collection of the
Applications Concept defined on 2.1.1.1.1. These
application concepts will consist of a number of
scenarios each written to represent a different
application concept. The scenario approach will
consist of a time line describing the various
activities including real-time aspects as well as the
non-real time aspects of the exercise. A set of
generic scenarios will then be generated with the
intention of fulfilling the goal of broad applicability
accross the various communities.

2. GATHER NETWORKING KNOWLEDGE --
Networking information will be collected during this
process and will be compiled in the Domain Knowledge
Catalogue.

3. GATHER APPLICATIONS KNOWLEDGE --
Applications information will be collected during this
process and will be compiled in the Domain Knowledge
Catalogue.

4. GATHER BUSINESS PROCESS KNOWLEDGE --
Business Process information will be collected during this
procedure and will be compiled in the Domain Knowledge
Catalogue.

5. GATHER RELATED ARCHITECTURE
KNOWLEDGE -- Related architecture information will be
collected during this process and will be compiled in the
Domain Knowledge Catalogue.

1. DOMAIN KNOWLEDGE CATALOGUE -- This catalogue
depicts the sources and the types of the documents found during
the fact finding process. It is important to maintain the catalogue's
currency to ensure the validity of the artifacts. In addition, analysts
should store this catalogue in a knowledge base. This will be a
gathering of all the domain information in order to formulate a
general or high-level understanding of the context and behavior of
the domain. Solicited high-level information applicable to the
domain may consist of the following: business models, brief
system descriptions, system capabilities, available domain models
and DSSAs, identifiable common system patterns, operational
environments, external interfaces, systems with similar
capabilities, known reuse opportunities, and available system
documentation.

2. DESCRIBE THE DOMAIN -- The goal of this process is to
develop a general description of the domain. The domain
description characterizes the domain in terms of its subdomains
and established relationships to other domains. The domain
definition provides a basis of understanding before proceeding
with the analysis. In addition, the domain description will be used
to predict and assess the level of effort that will be required to
conduct the analysis.

Description:

The key of conducting domain analysis is to understand the context of the domain
to be analyzed. The analyst must describe, at an acceptable level of detail, the domain

in which analysis will be performed.

The domain analyst uses data collected from reliable information sources and
archived in the Domain Knowledge Catalogue to compile a robust description of the
domain. The domain may be described in terms of its systems, system capabilities,
system interaction, subdomains and interaction between subdomains. In most cases,
the domain description includes the context and scope (boundaries) of the domain and
its interaction with external entities. For graphical illustration, the domain analyst
develops a context diagram depicting this external interaction.

To describe the domain, the analyst must understand the high-level composition
of the domain. To accomplish this, the analyst attempts to partition the domain's
systems into groups based on obvious system commonalities, common functionality
or common capabilities. Partitioned groups or "families" of systems that share a
unique set of commonalities in the domain are referred to as subdomains. The domain
may be composed of many interrelated subdomains.

The domain description, which characterizes the type of systems and associated
subsystems in the domain based on common system attributes, also describes its
related subdomains. Each subdomain is characterized by a unique set of related
attributes.

Activities:

• All of the key activities below are conducted by domain analysts with
results recorded in a knowledge base for future process efforts. These key
activities can be conducted sequentially.

• Define the domain's context. To describe the domain:

(1) initially scope the domain to determine its objects;

(2) determine the responsibilities of the domain;

(3) determine the services provided by the domain;

(4) identify the dependencies and relationships the domain has with
external domains; and

(5) determine the high-level functions (e.g., supply, medical,
personnel) of the domain and their interactions.

• Construct a context diagram illustrating the interfaces between the domain
and the external domains. Use existing system context diagrams as a
foundation for developing the domain context diagram. Show data and
control flows in the context diagram.

• Use the information provided by the system questionnaire, survey
responses and other possible sources to develop a general description.

• Use the Domain Knowledge Catalogue as an index for referencing key
documentation, such as the SRS or FD, in constructing context diagram
and extracting information for a domain description.

• Identify obvious boundaries and interfaces between different groups of
systems and subsystems identified.

• Determine the general categories or types of systems based on obvious
system similarities, and group systems accordingly.

• Determine the general relationships between the different types or families
of systems and subsystems identified.

• Develop a general description for the initial set of systems and related
subsystems under investigation and describe the system relationships.

• Continuously refine and update the description to reflect the scope of the
domain.

• Using the Feedback from Scope Domain (2.1.2) incorporate any lessons
learned, anomalies or discrepancies discovered during the scoping effort.

Mechanisms used to facilitate process activities include: Domain Analyst, a
Traceability Tool and a Knowledge Base Tool.

1. VERIFY DOMAIN DESCRIPTION:-- The goal of this process
is to verify that the description output from the previous process
matches the actual domain. domain experts independently verify
correctness of the context diagram and the domain description.

Description:

The domain description elaborates the problem domain as understood by domain
analysts. In order to proceed to the next activity, domain experts must verify the
domain description including the context diagram which depicts interfaces to external
domains. Experts apply their knowledge of the domain as well as knowledge
embodied in relevant artifacts to formalize the domain description. These artifacts
include the available business process model (IDEF0) and data model (IDEF1X)
developed by the business process improvement program. Domain experts check the
domain description for consistency with the business process and data models.

Activities:

All the activities below are recorded in a knowledge base for future process
efforts. These activities can be initiated sequentially.

• Identify problems or issues with constructive recommendations to refine
the domain description.

• Determine whether the domain definition delineates the domain with

sufficient detail and clarity such that the customer, domain experts, and
domain analysts have a common understanding of its scope.

• Use the available business process model (IDEF0) to verify whether all
the processes found at the highest level are clearly stated in the domain
description.

• Use the business rules model (IDEF1X) to check whether external
relationships are represented in the context diagram.

• Discuss and explain any problems to the domain analysts. Review
recommendations with analysts in order to expedite the refinement
activity.

• Obtain assistance from the domain analysts for clarification of the domain
description, as required.

• Using the Feedback from the process, Scope Domain (2.1.2), incorporate
any lessons learned, anomalies or discrepancies discovered during the
scoping effort.

• Record the results of the domain description verification into the
Knowledge Base Tool for the next iteration or future reference.
Verification results include problems and recommendation for refining the
description.

1. SCOPE DOMAIN -- The primary object of this process is to identify a
(portion of a-) domain on which to focus subsequent domain analysis
efforts. Constraining analysis efforts to manageable domains yields a
complete and detailed domain model and domain-specific software
architecture delivered in a timely manner. By scoping the domain,
multiple or concurrent domain analysis efforts can be initiated in order to
expedite the development of the final domain analysis and design
products.

The process of scoping the domain consist of the following subprocesses:

• Establish Scoping Criteria

• Define Domain Boundaries

• Verify Domain Scope

Each subprocess has a unique set of associated activities to accomplish the
prescribed subprocess objective.

1. ESTABLISH SCOPING CRITERIA -- The goal of this process
is to compile essential criteria that will be used to scope and to
select an initial target domain on which to focus initial engineering

efforts. This activity identifies and describes the technical
conditions used specifically to help focus initial analysis efforts in
a domain with a very broad scope.

Description:

The success of the domain analysis effort is based on the conditions established to
conduct the analysis process. Technical conditions should be established to balance
the domain’s scope against available resources to perform the engineering.

Scoping criteria are success predictors for the domain analysis -- a way to screed
out domains that have a low chance of being successfully analyzed. Prioritization and
weight assignment using formal methods (e.g., Analytic Hierarchy Process - AHP)
are important for formalizing the scoping criteria.

Activities:

All the key activities below are recorded in a knowledge base for future process
efforts. These key activities can be initiated sequentially.

• If possible, derive scoping criteria from reasonably successful domain
analysis and design efforts. Feedback from past efforts will provide
valuable input to developing scoping criteria. The following criteria have
been used on past domain analysis efforts and may be used as a basis for
evaluating and scoping other domains:

1. Number of Existing Systems - the number of existing systems
partially determines the amount of knowledge accumulated about a
domain. If a domain has less than three systems, the potential for
commonalities across the domain diminishes.

1. Future Systems Development - This factor identifies the number
of projected new systems and redesigned systems that can benefit
from a reuse analysis of the selected domain.

1. Vertical Reuse - Potential for sharing assets of a given application
in similar applications within the scope of the same domain.

1. Horizontal Reuse - Potential for sharing assets with or across
multiple domains.

1. Reuse Expertise - The amount of reuse and domain knowledge
employed during the development of a system greatly affects the
quality of extracted information and reusable assets. Development
team experience acquired during development will aid in the
communication of domain concepts, model validation, and general
interaction with domain analysts and domain designers.

1. Stability - A domain is stable if it experiences little change (e.g.,
additions, extensions, modifications, and deletions of

requirements) during the time period of concern.

1. Participation - Availability of systems and operational personnel
for phone and personal interviews, and for model verification and
DSSA validation. Willing participation and domain expertise is
integral to conducting domain analysis and design efforts through
data collection, model verification, and DSSA validation.

1. Available Information - In domain analysis, it is essential that
quality domain information be available for data collection. The
information will be used to gather and analyze system information.
This domain information includes: business process and rule
models, requirements, design, code, test, user documentation and
working papers.

• Tailor the aforementioned scoping criteria to conform with the Verified
Domain Description (2.1.1.5) identified in the process. For instance, the
number of existing systems criterion would not apply to an unprecedented
domain (new domain).

• Describe each scoping criterion in sufficient detail and ensure these
criteria correspond with the domain description.

• Determine weights to attach to each criterion. Relative weights are
assigned to criteria to emphasize their relative importance.

• Compile rationale supporting weight assignment to each criterion.

• Using the Feedback identified in the process, Analyze Domain (2.1.3),
incorporate any lessons learned, anomalies or discrepancies discovered
during the development of the domain models.

1. DEFINE DOMAIN BOUNDARIES -- The goal of this process is
to assess, select and describe the boundaries of the domain upon
which to focus initial domain efforts. The domain boundaries will
provide a starting point from which domain analysis efforts will
expand. With a domain that has an extremely broad scope this
process is essential to help focus the initial analysis effort. This
may be considered an optional activity, if the domain is already
well defined.

Description:

The success of the domain analysis depends on many factors. One of these
determinants is where to begin the analysis. "Divide and conquer" is the underlying
approach to conduct an effective domain analysis where the domain is very broad and
there are limited resources. In these cases, limited resources dictate that analysis

efforts concentrate on the initial area of interest within the domain which is expected
to provide the richest area of commonality and differences. The results of the initial
domain analysis efforts then provide a foundation from which the effort will continue
to grow and embrace the remaining areas of the domain.

To focus initial domain analysis efforts, an initial area of interest must be
determined. To accomplish this, selection criteria must be applied to each subdomain
to compute a score that indicates a good starting point. Domain analysis efforts must
be applied carefully for analysis, based on the maturity and stability of the
organizations and activities within each subdomain, and on the planned emphasis the
subdomain is to receive.

Activities:

All of the key activities below are conducted by domain analysts and results are
recorded in a knowledge base for future process efforts. These key activities can be
initiated sequentially.

• Build a Domain Boundary Matrix by applying the domain selection
criteria to each family of systems.

• For each family of systems, determine a rating for each criterion
established in the previous process (2.1.2.1).

• Compute the overall score for each family of systems by adding together
the rates of all the criteria.

• Select the subdomains or family of systems that have the highest score for
the initial domain analysis efforts. Prioritize subsequent domain analysis
efforts based on scores.

• Provide rationale for assigning domain analysis priorities based on rates
recorded in the Domain Boundary Matrix.

• Using the Feedback identified in the process, Analyze Domain (2.1.3),
incorporate any lessons learned, anomalies or discrepancies discovered
during the development of the domain models.

1. VERIFY DOMAIN SCOPE -- The goal of this process is to
ensure the correctness and completeness of the subdomain
identified in Identify Domain (2.1.1). This process is performed by
domain experts to check whether appropriate weights were applied
to each criterion and that the decision made to focus domain
analysis efforts was objective, not subjective.

Description:

The success of domain scoping depends on its correctness and completeness. It is
vital that domain boundaries be clearly defined to expedite the domain analysis effort

and to maximize the identification of commonalities and differences. To achieve this
objective, domain experts play an important role in providing an independent
technical examination and verification of the bounds of the domain established in the
Define Domain Boundaries process (2.1.2.2).

Domain experts check for consistency in the computation of weight values and
that these values are properly applied to each criterion. If needed, domain experts
should obtain assistance from domain analysts in clarifying any problems or issues
arising during the verification process. These problems should be recorded as part of
the Domain Boundary Refinements with appropriate recommendations and solutions.
To accelerate these corrections, domain experts should review proposed changes with
domain analysts by explaining the purpose of the refinements and justifying the
recommendations.

In conjunction with this step, Management Direction concentrates on the
feasibility of the domain analysis effort by assessing the depth and width of the
domain. Once domain boundaries are accurately defined, elaborated, satisfy
management requirements and pass domain experts' testing, the domain scope is
verified and approved. Using the Verified Domain Scope Report (2.1.2.3.1), domain
analysts can initiate the next phase, Analyze Domain (2.1.3).

Activities:

The activities described below are conducted primarily by domain experts, with
the assistance of domain analysts, where required. Results are recorded in a
knowledge base for future process efforts. These activities can be initiated
sequentially:

• Using the Domain Boundary Matrix, verify that all the weights are
properly and consistently applied to each criterion.

• Check for subjective decisions made in assigning values. Get assistance
from domain analysts for clarifications or reasons for the derivation of
selection criteria weight values.

• Identify problems, issues, and recommendations for the matrix.

• Discuss and explain problems with domain analysts. Review
recommendations with analysts in order to speed the refinement activity.

• Suggest revisions to the domain description for conformance with the
defined domain boundaries

• Obtain assistance from domain analysts in ensuring that the Verified
Domain Scope meets management requirements established under
Management Direction.

• Domain analysts use the Feedback identified in the process, Analyze
Domain (2.1.3), to incorporate any lessons learned, anomalies or
discrepancies discovered during the development of the domain models.

1. DOMAIN SCOPE REPORT -- This report will contain
information compiled during the Scope Domain Process
(2.1.2).

1. ANALYZE DOMAIN -- The objective of domain analysis is to identify,
derive, organize, abstract, and represent the body of knowledge of a
particular domain. This body of knowledge is represented by a domain
model. A domain model is similar to the system model derived in object-
oriented requirements analysis; however, the domain model includes reuse
guidance in the form of adaptation requirements, discarded alternatives,
rationale, lessons learned, and identification of systems supplying or
consuming the domain products. This information is key to constructing
requirements for future systems within the domain. The domain model
provides input to both the domain designer and the application software
analyst.

The process of analyzing a domain consists of the following subprocesses:

• Organize & Synthesize Problem Space Information,

• Identify Commonalities,

• Determine Common Objects Adaptation Requirements, and

• Verify Domain Model.

These subprocess can be performed in sequence, although experience has shown
that iterations of the process may produce greater detail and understanding, thereby
increasing reuse potential. Information gathering tends to extend almost throughout,
as some documents may reference other publications necessary for, or helpful to, the
analysis effort. The identification of adaptation requirements often takes place each
time a commonality is discovered.

Each subprocess has a unique set of associated activities to accomplish its
prescribed objective. Subprocess activities provide guidance and a framework for
conducting the process. Innovative methods are also encouraged to supplement
existing activities.

As illustrated in Analyze Domain (2.1.3), each subprocess has: an assigned set of
inputs which are transformed into associated outputs; controls that govern the
subprocess activities; and mechanisms that indicate the means by which the
subprocess activities are performed.

The following sections describe the subprocesses necessary to properly analyze a
chosen domain. Each subprocess is described in terms of its basic objective,

description, associated activities, controls, mechanisms, inputs, outputs, process
improvement efforts, lessons learned (if any), and examples (if any).

1. ORGANIZE & SYNTHESIZE PROBLEM SPACE
INFORMATION -- The goal of this process is to merge and
categorize existing systems analysis information into a Problem
Space Catalogue. This catalogue provides an index of all relevant
software engineering information (e.g., Concept document,
requirements document (SRS or FD), interface requirements
specification (IRS), business models, existing source code,
technical literature). The problem space catalogue is used by other
process activities to easily locate domain information. Specific
systems analysis information solicited from current development
efforts include: Object-Oriented (OO) Diagrams, Data Flow
Diagrams (DFDs), Entity-Relationship Diagrams (ERDs), Entity-
Relationship-Attribute Diagrams (ERADs), Global Data
Model/Logical Data Model (GDM/LDM), Business Process
Models (IDEF0), Data Models (IDEF1X), State Transition
Diagrams (STDs), Time Dependency, And Other Pertinent
Analysis Diagrams.

Description:

To formulate an accurate perception of the domain, it is essential that reliable,
detailed domain information be identified, gathered and evaluated for future use.
Valuable domain information collected by analysts will be used during ensuing
activities to help determine domain commonalities and differences.

The primary source of domain information is the domain expert. Domain expert
involvement is critical for the identification of the fundamental reusable software
assets which are needed for future applications/development within the domain.
Individuals experienced in defining requirements or developing systems in the
domain are an initial source of information for identifying underlying system
requirements, capabilities and functionality. Ideally, domain experts who are focusing
on the front-end of the software life-cycle are indispensable in soliciting analysis
information and verifying the domain model.

Documentation plays a key role in system analysis; unfortunately, it is often out-
of-date and/or incomplete. System designs, user manuals, other documentation and
source code for recent system development in the domain are also targets for detailed
information gathering. Specific systems analysis information solicited from current
development efforts include:

• Diagrams: Object-Oriented (OO) Diagrams, Data Flow Diagrams (DFDs),
Entity-Relationship Diagrams (ERDs), Entity-Relationship-Attribute

Diagrams (ERADs), Global Data Model/Logical Data Model
(GDM/LDM), Business Process Models (IDEF0), Data Models (IDEF1X),
State Transition Diagrams (STDs), Time Dependency, and other pertinent
analysis diagrams.

• Documentation: SRS or FD, concept document, user's manual, and other
important analysis documentation

If source code is available from legacy systems, a reverse engineering technique
is employed to analyze the program. Existing source code is reverse-engineered to
uncover system entities and structures so that analysts may acquire a better
understanding of system capabilities and behavior. The procedures produce
representations of the program in graphical form, such as dependency diagrams,
structure charts and architectural diagrams. The aim of reverse engineering is to
recover the design of existing software systems, then abstract recovered design
information and express the design in a form appropriate for display and manipulation
by automated CASE tools.

Once collected, domain information is coarsely evaluated by the analyst, based on
the quality of knowledge provided and its relevance to the current analysis focus.
Immediate analysis requirements determine which domain information will provide
the most benefit to current analysis efforts. However, all information should be
catalogued and stored (for media or soft-copies) in the Knowledge Base for future
reference and analysis.

Activities:

All of the key activities below are conducted by domain analysts. Domain experts
are interviewed and the interview results are recorded in a knowledge base for future
process efforts. These key activities can be initiated sequentially.

• Interview personnel responsible for determining system requirements for
the family of systems that fall within the selected domain. Concentrate the
interview on extracting or identifying any underlying or common set of
requirements that are shared by all systems that fall within the domain
scope. In addition, ask questions relating to system differences within the
selected domain.

• Using the Domain Knowledge Catalogue developed in the process, Gather
Initial Domain Knowledge (2.1.1.2), as a framework, expand the list with
more detailed analysis information focusing on system documentation
(e.g., SRS, FD, software concept document, user's manual), system source
code, system design decisions, and other system information. Collect
(from domain experts) and organize these documents to get a better
understanding of the system(s).

• Extract a complete set of graphical system representations from the
collected documentation for each system within the domain. Graphical

system representations are formal models: OO diagrams, DFDs, STDs,
ERDs, ERADs, GDM/LDMs, structure charts, etc.

• Reverse-engineer existing source code to uncover system entities and
structures so that analysts may acquire a better understanding of system
capabilities and behavior. This is accomplished by producing
representations of the program in graphical form, such as dependency
diagrams, structure charts or architectural diagrams.

• Develop a Domain Analysis Catalogue that indexes all compiled,
organized, and synthesized domain information, including the reverse-
engineered products.

• Using the Feedback identified previous processes incorporate any lessons
learned, anomalies or discrepancies discovered during the development of
the complete DSSAs.

• Identify problems encountered during the development of the Domain
Analysis Catalogue which might result in modification of the domain
scoping.

1. ORG. & SYN. NETWORKING REQUIREMENTS --
Follow the procedures described in 2.1.3.1 concentrating in
networking requirements.

2. ORG. & SYN. APPLICATIONS REQUIREMENTS --
Follow the procedures described in 2.1.3.1 concentrating in
applications requirements.

3. ORG. & SYN. BUSINESS PROCESS
REQUIREMENTS -- Follow the procedures described in
2.1.3.1 concentrating in business process requirements.

1. REQUIREMENTS DOCUMENT -- This
document will contain a collection of the findings
during the Requirements Process, it will feed the
Requirements Traceability Matrix.

4. DETERMINE REQUIREMENTS TRACEABILITY --

1. TRACEABILITY MATRIX -- An important
concept for TENA will be the ability to trace
requirements to programs to service unique test and
training needs. This will be compiled in a
traceability matrix. The requirements traceability
matrix is required to support the requirements
validation process. The matrix will indicate the type

of requirement, time frame, mission need statement
(MNS) or operational requirement document (ORD)
if applicable, service, command and individual
program point of contact, telephone number and
remarks.

5. DETERMINE REQUIREMENTS BENEFITS -- The
list of potential requirements and applications concepts will
initially be gathered without particular regard to any
consideration of the benefits associated with the concept.
After compiling and distilling a representative list, a benefit
analysis will be performed. In order to minimize the effort
associated with such an activity, the analysis will
concentrate on the relative benefit associated with each
requirement. The idea is not to cost justify any particular
concept but to simply rank them so that the relative
importance can be conveyed to the architecture team and
major drivers can be identified. Factors to be considered
include but are not limited to: cost, benefit, feasibility,
usability, and reusability.

1. RELATIVE BENEFITS STUDY DOCUMENT -
- This document will contain a description of the
requirements and the weight factors used to
determine the requirement relative benefit.

6. VERIFY REQUIREMENTS --

1. DOMAIN REQUIREMENTS STEP 1
DOCUMENT -- The resulting data sets will
provide a distillation of the requirements along with
traceability in support of the TENA requirements
task as well as a series of joint interoperability ideas
from applications concepts task. After these
requirements are consolidated, they will be placed
into a database for ease of access and review. An
important concept for TENA will be the ability to
trace requirements to programs to service unique
test and training needs.

1. IDENTIFY COMMONALTIES -- This effort determines the
amount of reuse potential to be realized from the domain
engineering effort. Commonalities can be in the form of objects,
classes, functions, processes, entities, relationships, data elements,
and so forth. The purpose is not necessary to find exact matches
but similarities. Commonality can be identified in a number of
ways, such as:

• Identification by Domain Experts - Input is necessary from individuals
such as system users, functional proponents, commanders, and other
personnel who work with and understand the problem domain in question.
Their knowledge of repeated processes and data manipulation algorithms
is extremely valuable. Different types and levels (i.e., skill area, rank) of
domain experts provide multiple perspectives of commonality.

• Examination of Analysis Documentation - All analysis documentation,
such as object diagrams (interaction, inheritance, aggregation, etc.), data
flow diagrams, state transition diagrams, and business process and data
models, are potential sources for the modeling of the requirements of the
domain. As discussed in [CAMP90], software components can exist at
different levels of abstraction. Similarities can be found at the smallest
component level, at a CSC level, or at an architectural level. Often, the
same information is represented with different formats, terminology, and
in different groupings.

• Examination of Design Documentation - Design documentation portraying
previous system solutions can provide commonality information through
the study of the use of generics, templates, and other reuse mechanisms.
Often, a system's analysis products are in a functional decomposition
format. If the corresponding design employed OOD methods,
identification of problem space objects in the design can also be useful to
the domain analysis process. This constitutes a reverse engineering of the
design. The analyst must, however, be alert to avoid introducing solution
space information into the problem space and remain focused on only the
problem space objects found in the design.

As in object-oriented analysis, domain commonalities are generalized into classes
that represent abstractions of their respective set of objects. This process is not strictly
top-down (i.e., without regard for existing assets) in nature, nor is it purely bottom-up
(i.e., basing analysis only on existing assets). The goal is to satisfy future
requirements with as many existing assets as practicable.

The commonality identification progression does not just proceed from a high
level of abstraction to the lowest. Instead, there is an undulation as new information
discovered in the lower levels of detail affects parent classes/objects. There is an
iterative shaping of classes as new similarities are discovered.

The process of identifying commonalities consists of the following subprocesses:

• Identify Objects & their Relationships,

• Determine Behaviors,

• Identify Constraints,

• Develop Domain Common Objects Model, and

• Verify Domain Common Objects Model.

These subprocesses can be performed in sequence, although experience has
shown that iterations may produce greater detail and understanding, thereby
increasing reuse potential. Information gathering tends to extend almost throughout,
as some documents may reference other publications necessary for, or helpful to the
analysis effort. The identification of adaptation requirements often takes place each
time a commonality is discovered.

Each subprocess has a unique set of associated activities to accomplish the
prescribed subprocess objective. Subprocess activities provide ample guidance and a
framework for conducting the process. Fresh, innovative methods are also encouraged
to supplement existing activities.

In Identify Commonalities (2.1.3.2), each subprocess has: an assigned set of
inputs which are transformed into associated outputs; controls that govern the
subprocess activities; and mechanisms that indicate the means by which the
subprocess activities are performed. The following sections describe the subprocesses
necessary to identify the domain for analysis. Each lowest level subprocess is
described in terms of its basic objective, description, and associated activities.

1. IDENTIFY OBJECTS & THEIR
BEHAVIORS(RELATIONSHIPS) --

The primary focus of object identification is to capture common objects,
associated characteristics in the form of attributes and services, and relationships
consisting of object structures and their connections. Object-oriented modeling
techniques are recommended as the foundation of the domain model because it helps
to [COAD91e: 3]:

• Tackle more challenging problem domains. OOA brings extra emphasis
to the understanding of problem domains.

• Improve analyst and problem domain expert interaction. OOA
organizes analysis and specification using the methods of organization
which pervade people's thinking.

• Increase the internal consistency of analysis results. OOA reduces the
bandwidth between different analysis activities by treating Attributes and
Services as an intrinsic whole.

The object-oriented world is more disciplined than that of conventional structured
techniques. It leads to a world of reusable classes, where much of the software
construction process will be the assembly of existing well-proven classes [MART92:
31]. There are various object-oriented paradigms that can be used to represent the
object-relationship model. This document will not endorse a particular object-oriented
technique but it will provide the reader with essential and general object-oriented

constructs to develop the object-relationship model.

The process of identifying commonalities consists of the following subprocesses:

• Determine Composition,

• Identify Structure, and

• Determine Connection.

These subprocesses can be performed in sequence. Experience has shown,
however, that iterations may produce greater detail and understanding, thereby
increasing reuse potential. Information gathering tends to extend almost throughout,
as some documents may reference other publications necessary for, or helpful to the
analysis effort. The identification of adaptation requirements often takes place each
time a commonality is discovered.

1. DETERMINE BEHAVIORS -- The goal of this process
is to identify object behaviors by understanding and
determining the way each object interacts, functions,
responds, or performs. Each object is considered in
isolation from others. The behavioral model yields three
basic components[EMBL92: 9-10]:

1. The states that each object exhibits throughout its existence;

1. The conditions that cause an object to make the transition from one state
to another; and

1. The actions performed by, or on, an object in various states and
transitions.

This process is optional if the domain does not exhibit any real-time
characteristics.

Description:

Yourdon characterizes a behavioral model as "the required behavior of the insides
of the system necessary to interact successfully with the environment" [YOUR89:
326]. This characterization applies to structured analysis, but the same concept can be
employed in the object-oriented analysis paradigm.

Behavior is how an object acts and reacts, in terms of its state changes and
message passing. In other words, "The behavior of an object is completely defined by
its actions." [BOOC91: 80] So, a behavioral model for an object is similar to a job
description for an object. Both describe what an object must do within a system.
[EMBL92: 60] A behavioral model encompasses the object states, triggers and
transitions, and actions.

An object state represents an object's status, phase, situation, or activity. While

identification of object states is an essential part of behavior modeling, it is of little
value without examining how one state relates to one another in the dynamic context
of system operation. The process of changing the state of an object is called a
transition. The events and conditions that activate state transitions are called triggers.
In addition to states and transitions among states, a behavioral model exhibits the
performance of an object by modeling its actions. An action may cause events, create
or destroy objects and relationships, observe objects and relationships, and send or
receive messages. [EMBL92: 60-62]

For more explicit information regarding behavioral modeling, readers can refer to
OOA literature and books, such as: Object-Oriented Systems Analysis-A Model
Driven Approach, by Embley et al.; Object-Oriented Design with Applications, by
Booch; Object-Oriented Modeling and Design, by Rumbaugh et al; and other OOA
publications cited in Appendix C.

Activities:

All of the key activities below are conducted by domain analysts using an object
modeling tool and a traceability tool. Results are recorded in a knowledge base for
future efforts. These key activities can be initiated sequentially.

• Use the object relationship model as the foundation to determine the
object events in terms of states, triggers and transitions, and actions.

• Identify object states by looking at how an object behaves in a domain. A
state represents an object's status, phase, situation, or activity. [EMBL92:
60]

• Identify triggers and transitions by determining the expected events and
system conditions that activate a change of state for an object.

• Identify the actions that an object performs. An action may cause events,
create or destroy objects and relationships, observe objects and
relationships, and send or receive messages. [EMBL92: 62]

• Record results of object behaviors identification in the Class/Object
Requirement Specification by entering information into the behavioral
fields. NOTE: Composite Event Names represent states of an object at the
compound level, whereas Primitive Event Names denote states of an
object at the atomic level. For example, if the object is a Purchase_Order
and the possible states or events for this object are Cut, Filled, Shipped,
and Closed with Shipped being the Composite Event, then a Primitive
Event for Shipped might be Logged and Send.

1. IDENTIFY CONSTRAINTS -- This process will
determine the required qualities and limitations of an
object. Each element in the domain model may be
annotated with additional constraints, representing
conditions that must be met at particular points in time, or

over specific periods of object activity. Constraints are used
to denote the limitations of the domain on its objects and
their behavior.

Object constraints denote the limitations of the domain on its objects and their
behavior. Constraints serve to rule out anomalous states [LOND86]. They represent a
general capability to declare conditions that must be true for a particular element or
set of related elements. There are a number of possible forms constraints may take,
including:

• Existence of attribute values or relations,

• Cardinalities of attributes or relations,

• Constraints on allowable values of an attribute,

• Conditions relating multiple attribute values that constrain the values that
these attributes may hold,

• Preconditions to an operation,

• Postconditions to successful completion of an operation, and

• Temporal relationships of objects and operations. [GILR89: 63]

Activities:

All of the key activities described below are conducted by domain analysts using
an object modeling tool and a traceability tool. Results are recorded in a knowledge
base for future efforts. These key activities can be initiated sequentially.

• For persistent objects, identify the duration or time span of the attribute
values or relations.

• Determine cardinality constraints of attributes or relations by specifying
the upper and lower bounds of the cardinality.

• Define the allowable values of an attribute.

• Identify conditions that relate multiple attribute values which constrain the
values these attributes may hold.

• Determine the preconditions and postconditions to an operation.

• Capture the temporal relationships of objects and operations.

1. DEVELOP DOMAIN COMMON OBJECTS MODEL -
- The goal of this process is to consolidate and finalize the
domain common objects model. The integrated domain
common objects includes all the information identified and

recorded in the aforementioned process within the Identify
Commonalities (2.1.3.2) process.

In addition, rationale and tradeoffs, classification terms, and any pertinent object
characteristics (e.g., concurrency, external interfaces) are defined and documented to
complete the domain common objects model diagrams and specifications.

Description:

The Domain Common Objects Model is not complete until rationale and tradeoffs
for each class and object are documented, common objects classification terms are
defined, and class and object characteristics are fully specified. This process brings all
the information assimilated and generated during the identification of objects and
relationships, determination of object behaviors, and identification of object
constraints together to form the final basis of the common objects model.

The Object-Relationship Model, Object-Behavioral Model, and Object
Constraints are consolidated to produce the formal common objects model. During
this process, analysts finalize the common objects model diagrams by ensuring that
all classes and objects are characterized with attributes and operations, relationships
are established with appropriate structures and connections, and the required object
behaviors and constraints are portrayed and documented. In addition, analysts
complement the Class/Object Model Specification by capturing rationale and trade-
offs for each class and object to justify the class and object existence. Analysts also
develop the initial classification terms that will be used to qualify and retrieve
reusable software assets.

A faceted classification scheme is employed to represent the classification terms.
A faceted classification scheme identifies a set of facets, or categories, applicable to
assets within a reuse library. These facets characterize the asset by identifying
distinguishing attributes (in the form of facet terms) that can be used to classify,
search, understand, evaluate, and select reusable software assets. An asset
classification is determined by the aggregate, or synthesis, of its attributes for all
facets.

Activities:

All of the key Activities below are conducted by domain analysts using an object
modeling tool and a traceability tool. Results are recorded in a knowledge base for
future process efforts. These key Activities can be initiated sequentially.

• Integrate the Object-Relationship Model, Object-Behavioral Model, and
Object Constraints diagrams by ensuring that all classes and objects are
characterized with attributes and operations, relationships are established
with appropriate structures and connections, and required object behaviors
and constraints are portrayed and documented.

• Construct classification terms using a faceted classification scheme.

1. Compile a set of terms that are unique to the domain (i.e., system
acronyms, synonyms, etc.).

1. Class structure should be used as the initial basis for the domain
categorization. Terms used to identify class and class
characteristics should provide substantial input to deriving a
domain classification scheme.

1. Derive a preliminary classification scheme based on component
types and object specifications.

1. Create the domain classification scheme from available domain
terms. Provide a description for each domain-related term. Assess
term descriptions to eliminate redundancy and ambiguities. Use
standard terms.

The following Activities represent additions or changes made to the Class/Object
Requirement Specification.

• Identify rationale and trade-offs for each class and object. Include this and
a full description of each class and object in the CORS. Record the results
of the rationale and tradeoffs (e.g., issues raised, alternatives considered
and reasons for choosing one alternative over others) in a Knowledge
Capture Tool.

• Define required concurrency aspects for each class and object and
elaborate in the CORS. [Optional]

• Specify external interfaces with associated external class or object names.

• Develop Logic/Algorithms for every class and object service. As a
framework, use Yourdon's Structured English technique to describe the
class and object services' logic/algorithms. NOTE: According to Yourdon,
Structured English is a subset of the full English language with some
major restrictions on the kind of sentences that can be used and the
manner in which sentences can be put together. It is also known as PDL
(for Program Design Language) and PSL (for Program Statement
Language or Problem Specification Language). [YOUR89: 206-207].

The Activities below apply to the incorporation of refinements identified in the
verification process. These Activities can be initiated sequentially.

• Review recommended changes with domain experts to expedite the
refinement process.

• Use the Domain Common Objects Model Refinements output from the
Verify Domain Common Objects Model process (2.1.3.2.5), to incorporate
errors and discrepancies identified in the verification process.

1. VERIFY DOMAIN COMMON OBJECTS MODEL -- .
This activity ensures correctness and completeness.
Domain experts independently verify the common objects
diagrams, the class/object requirement specification, and
the classification terms.

Description:

The domain model of common objects represents the common aspect of the
domain model. To proceed to the next process, which is to identify differences in the
domain requirements, domain experts must independently verify the domain model of
common objects developed by domain analysts. The domain model of common
objects includes common objects illustrations, specifications, rationale and trade-offs,
and common objects classification terms.

It is vital that domain experts have systems analysis experience, specifically in the
object-oriented analysis paradigm. With this background, experts can comprehend the
object-oriented notation used by domain analysts in developing the domain common
objects model.

There are two levels of verification. For the first level, experts focus on whether
the domain model of common objects conforms with the business process model
(IDEF0) and data model (IDEF1X). This ensures that entities, entity relationships,
and Activities are captured in the domain model of common objects. In addition,
traceability is established from the domain model of common objects to the business
process and data models. For the second level, experts check for complete
representation and description of objects, object relations, object behaviors, and
object constraints. Specifically, experts verify the encapsulation of the common
objects by looking at common attributes, services, and relations.

Activities:

All of the key Activities described below are conducted by domain analysts and
the domain experts. Results are recorded in a Knowledge Base Tool for future efforts.
These key Activities can be initiated sequentially.

• Determine if all the entities and their relationships depicted in the IDEF1X
diagrams are represented in the domain model of common objects. Ensure
that appropriate traceability is established from each class and object to
the entities defined in the data model.

• Verify that all the Activities illustrated in the IDEF0 diagrams are
captured in the model. Ensure that appropriate traceability is established
from each class and object's services to the Activities defined in the
business model.

• Check for complete representation of objects, object relations, object
behaviors, and object constraints.

• Check the encapsulation of the common objects by looking at common
attributes, services, and relations.

• Check to ensure all the fields of the Class/Object Requirement
Specification are entered and that the fields conform with the common
objects diagrams.

• Identify problems or issues with constructive recommendations to refine
the domain common objects model.

• Discuss and explain any problems with domain analysts. Review
suggestions to correct these problems with analysts in order to expedite
the refinement activity.

• Use the Feedback identified in the process, Develop DSSA Guidelines
(Node A4.5 in Figure 4-19), to incorporate any lessons learned, anomalies
or discrepancies discovered during the development of the complete
DSSAs

1. DETERMINE COMMON OBJECTS ADAPTATION REQS --
The goal of this process is to identify the differences among
domain common objects, i.e., Adaptation analysis. Adaptation
analysis is critical in deriving a TENA and component library that
can adapt to future system needs. This analysis of required
adaptation may be based upon mission, threat, domain, or system
planning information [GILR89]. Adapting requirements is
accomplished either by annotating the class/object requirement
specification, or by defining the overall domain adaptation
requirements and allocating them to specific common objects.
These factors can be identified concurrently with commonality
identification.

Description:

Adaptation requirements identify the different applications of the
common capabilities. Just as commonality identification is necessary to establish a
grounds for reuse, adaptation identification is necessary to tailor the information to
particular needs.

Adapting requirements is accomplished either by annotating the
Class/Object Requirement Specification, or by defining the overall domain adaptation
requirements and allocating them to specific common objects. These factors can be
identified concurrently with commonality identification.

The techniques to represent adaptation can take many forms. The
generalization-specialization feature of OOA provides for subclasses where different
configurations can be represented. The CORS have adaptation sections in the
class/object, attribute, and operation sections. State transition and/or structured logic
representations can also identify tailorable needs by modified notation.

Often, another perspective on commonality may be realized in this
step, causing a refinement to a class content or hierarchy.

In some cases, certain capabilities may be mutually exclusive and
cannot exist together in the same system. This cardinality can be represented by an
instance connection that denotes a zero-to-zero relationship between objects/classes.

Activities:

All of the key Activities described below are conducted by domain
analysts using an object modeling tool and a traceability tool. Results are recorded in
a knowledge base tool for future efforts. These key Activities can be initiated
sequentially.

• To determine appropriate adaptation requirements, use the following
factors as a framework:

1. Flexibility in operation,

2. Mission adaptation (needs, threats, etc.),

3. Environment/site adaptation,

4. Platform adaptation,

5. User adaptation, and

6. New technology adaptation.

• Observe trends from an analysis of changes or evolutions of previous
systems.

• Update the domain common objects diagrams by adding subclasses and
their characteristics (attributes and services) to existing class constructs.
Use a generalization-specialization structure to represent the new
subclasses.

• Identify any adapted object connection, behavior and constraints.

• Describe adaptation capabilities for each class and object, attribute, and
operation.

• Capture classification terms for the adapted model and merge with the
common classification terms.

• Identify rationale and tradeoffs for each object adaptation. Use a
Knowledge Capture tool to record this data. Rationale and tradeoffs
describe issues raised during development, alternatives that were
considered, and reasons for choosing one alternative over others.

• Consolidate the Verified Model of Common Objects and their documented

adaptations to form the complete domain model.

• Develop guidelines for the domain model describing how to use the model
in a new system development. The guidelines should include the
following:

1. Notation (e.g., Coad/Yourdon, Rumbaugh, Colbert) or
nomenclature used to develop object-oriented diagrams;

1. Format of diagrams and specifications (i.e., automated tools);

1. Definition and scope of the domain;

1. Documentation references; and

1. Potential usage of domain model.

1. VERIFY DOMAIN MODEL -- The goal of this process is for
domain experts to independently verify the domain model (i.e.,
Object-oriented diagrams, specifications, classification, guidelines,
and rationale and trade-offs). Prior to this process, both
commonalities and differences of projected future system instances
are well understood for the family of systems in the application
domain. Verification of the domain model can be achieved in the
following ways: inspection, prototyping, and simulation.

Description:

The domain model must be verified to establish a reliable baseline. The
business process and data models, if available, should be used as the "doctrine"
against an operational scenario. Verification can be accomplished in the following
ways:

• Inspection - A team of domain experts examines the model to verify
completeness and correctness. Preferably, some of the domain experts
have not taken part in the information gathering, thereby providing an
independent review. Operational scenarios can be used at this step to
assure the correctness of the model.

• Prototyping - A small set of capabilities can be implemented using a
prototyping tool/language. The prototype would then be executed.

• Simulation - A simulation model can be constructed to refine the object
model and to explore adaptation mechanisms. Simulation provides an
excellent means for analyzing the effects of future system environment
changes (i.e., mission, threat, theater, etc.) and for performing "what-if"
analyses. [GILR89: 69]

Activities:

All of the key Activities described below are conducted by domain
analysts and domain experts. Results are recorded in a Knowledge Base Tool for
future efforts. These key Activities can be initiated sequentially.

• Use the business process (IDEF0) and data (IDEF1X) models as the
"doctrine" against an operational scenario.

• Conceptually construct future instances from the objects identified in the
domain model in the form of an operational scenario.

• Use the developed operational scenarios to assure the correctness of the
domain model. For each operational scenario, analyze the domain model
to verify that these specific future systems can be accommodated.

• Prototype the model to assure the execution of the domain model.

• Develop a simulation model to refine the object model, to explore
adaptation mechanisms, and to conduct "what-if" analyses.

• Check the classification terms, guidelines, and rationale and tradeoffs for
understandability, accuracy, consistency, and conformance with the
domain model diagrams and specifications.

• Discuss and explain any problems encountered during inspection,
prototyping, or simulation with domain analysts. Review suggestions for
correcting these problems with analysts in order to expedite the refinement
of the domain model.

1. DEFINE DOMAIN ARCHITECTURE (TENA) -- This activity builds a
high-level TENA that will be the framework for the rest of the domain
design effort. Often more than one existing solution can satisfy the
requirements and constraints of the domain. In that case, multiple initial
TENA-like architectures can be proposed, to provide: a) the opportunity
for the domain engineering group to chose the optimal solution, or; b) the
possibility of more than one solution for a domain. The effort necessary to
design one TENA that adapts to all possible needs may prove
impracticable, especially for large domains.

1. SELECT STANDARDS/PROTOCOLS --

2. DEFINE APPLICATIONS FRAMEWORK --

3. VALIDATE TENA -- The goal of this process is to ensure that
the TENA created meets the model requirements, domain
constraints, and provides a workable solution. This validation
provides confidence and motivation to potential users to reuse the
design.

1. DEVELOP INTEGRATED VALIDATION PLAN --
Draft and final documentation will be developed in order to
address the plans & objectives of the TENA validation.
This document will address program goals and establish the
success criteria for the conduct of a proof of principle
demonstration(s). TENA represents an effort to develop an
architecture. Consideration must be given to the
methodology used to demonstrate the architectural
concepts, particularly those which are not well represented
in other implementations. This task will consist of
developing the methodology for demonstration and
validation. There are many possibilities, network
simulation, lab test, field exercises, etc. However, for
planning purposes the TENA project will identify a limited
concept evaluation opportunity in FY1996 (aimed at
validating architectural concepts) and a user concept
validation in FY1996.

2. INSPECT/REVIEW COMPONENT VALIDATIONS --
At this time the TENA Concept Validation team will
inspect and review the component validation plan to ensure
the TENA meets requirements.

3. SIMULATE INTEGRATED TENA --

1. PROTOTYPE INTEGRATED TENA --

2. DEFINE TENA STEP II -- As the requirements and applications concept
processes are completed, the bulk of the architectural definition must begin in
earnest. This is the effort which will produce several TENA candidates for
concept validation, team and industry review. The results of this exercise include
almost complete TENA definitions, standards and protocols which will have a
sufficient depth to enable meaningful review, simulation, and selected concept
validation exercises.

3. DEFINE TENA STEP III -- The results of industry reviews, simulations, and
selected testing of concept architectures result in the refinement and selection of
the proposed TENA.

1. TRANSITION DEFINITION-- Transition is required to ensure that the TENA
architecture becomes instanciated in the T&E and training communities, it is also a
CTEIP requirement, and as such proper transition planning and definition need to be
incorporated in the TENA Project early on. Draft and final TENA implementation guide
Transition Planning are the responsibility of the Air Force and will be lead by IPT leader,
Mr. Steve Salas of Edwards Air Force base. Mr. Salas will be supported by members of
the Program Management Office and by other Service representatives.

1. TRANSITION PROCESS PLANNING-- This process will define the

objectives, constraints and requirements of the transition process.

2. DEVELOP USER’S GUIDE -- TENA has broad applicability across many
programs and organizations. As a result, it is necessary to describe in one
document how TENA relates to various programs, users and customers. A user’s
guide will provide direction to those who choose to implement TENA and is
primary source of the TENA intellectual property documentation. It will
complement the architecture description and provide guidance to implementers. In
addition, it will include the type of information and definitions required by project
managers to determine TENA applicability and TENA compliance.

1. BUSINESS MODEL DRAFT -- Develop a draft TENA business plan
which will include a business model. The business model will outline the
steps required to plan, organize, schedule and conduct a test or training
scenario in the TENA environment. The business plan will identify issues
which T&E facility users, e.g., Acquisition managers, training
coordinators, test directors, etc., Will need to plan for and schedule in the
multi-site/service TENA environment. The plan will also provide a
comprehensive description of the capabilities and conceptual applications
for the TENA environment. This information will assist users in
determining TENA test capabilities are required/desired for their program.

2. BUSINESS MODEL FINAL -- Develop a final TENA business plan
after the review of the draft plan.

3. CTEIP TRANSITION -- The Transition Plan will recommend the necessary
T&E funding, logistics and infrastructure needed to continue the benefits of the
TENA architecture into the future. The Transition Plan will also document the
assets remaining in place from the concept validation. The Transition Plan will
define the support required so that organizations implementing the TENA
architecture will have a source of; expertise, reusable assets and updates to the
basic architecture.

1. DEMONSTRATION ASSETS DRAFT -- A draft demonstration
procedure will be developed to demonstrate the TENA concept.

2. DEMONSTRATION ASSETS FINAL -- A final demonstration
procedure will be developed to demonstrate the TENA concept

4. TENA IMPLEMENTATION PLAN -- The implementation guide will define
the process to be followed, including equipment, software, and network
connectivity, for a test or training site or activity to become TENA compliant. An
implementation guide will provide direction to those who choose to implement
TENA. It will complement the architecture description and provide guidance for
implementation. In addition, it will include the type of information and definitions
required by program managers to determine TENA applicability and TENA
compliance.

1. ROADMAP DRAFT -- The road map will recommend, at a high level,

TENA compliance implementation strategy for the T&E and training sites.
The road map will address a broad category of issues relevant to and
affecting TENA. These include changing directions in national security
strategies, national military strategies and derived doctrine and the effects
of emerging technology. The recommendations will be based on the
requirements development, selected applications concepts and the lessons
learned from the concept validation events.

2. ROADMAP FINAL -- Develop a final TENA roadmap after the review
of the draft plan.

APPENDIX A

ACRONYMS

4GL Fourth Generation Language

AHP Analytic Hierarchy Process

ARC Army Reuse Center

ASD(C3I) Assistant Secretary Of Defense For C3I

ASW Anti-Submarine Warfare

BPIP Business Process Improvement Program

BPM Business Processing Model

C3I Command, Control, Communications, And Intelligence

CASE Computer Aided Software Engineering

CIM Center For Information Management

CMM Capability Maturity Model

CODS Class/Object Design Specification

CORS Class/Object Requirement Specification

COTS Commercial-Off-The-Shelf

DASD(IM) Deputy Assistant Secretary Of Defense For
Information Management

DEP Domain Engineering Process

DBMS Database Management System

DDI Director Of Defense Information

DFD Data Flow Diagram

DISA Defense Information Systems Agency

DoD Department of Defense

DSSA Domain-Specific Software Architecture

ERAD Entity-Relationship-Attribute Diagram

ERD Entity-Relationship Diagram

FAPM Functional Activity Program Manager

FD Functional Description

FIM Functional Information Manager

GDM/LDM Global Data Model/Logical Data Model

GOTS Government-Off-the-Shelf

GUI Graphical User Interface

HDC High-Demand Category

HW Hardware

ICAM Integrated Computer Aided Manufacturing

IDEF ICAM Definition Method

IDEF0 This IDEF version provides Business Process Models

IDEF1X This IDEF version provides Business Data Models

IRS Interface Requirements Specifications

MIL-STD Military Standard

MIS Management of Information Systems

OMT Object Modeling Technique

OO Object-Oriented

OOA Object-Oriented Analysis

OOD Object-Oriented Design

PC Personal Computer

PDL Program Design Language or Program Definition
Language

PEO Program Executive Office

PEO STAMIS Program Executive Office for Standard Army
Management Information Systems

POC Point-of-Contact

POL Petroleum, Oils, and Lubricates

PSL Program Statement Language or Problem Specification
Language

RAPID Reusable Ada Products for Information Systems
Development

SDLC Software Development Life-Cycle

SEI Software Engineering Institute

SQL Structure Query Language

SRP Software Reuse Program

SRS Software Requirements Specification

STD State Transition Diagram

STARS Software Technology for Adaptable, Reliable
Systems

SW Software

TENA Test and Training ENabling Architecture

TIM Technical Integration Manager

TRM Technical Reference Model

APPENDIX B

DEFINITIONS

This appendix identifies and describes basic concepts and jargon which are helpful in
understanding the domain analysis and design process.

Abstraction

(1) The principle of ignoring those aspects of a subject that are not relevant to the
current purpose in order to concentrate more fully on those that are [Oxford, 1991:2].

(2) A problem analysis principle in which a problem is analyzed in general, then
refined into subproblems, all of which exhibit the traits of the original problem [DAVI90:372].

(3) A principle to manage complexity.

Adaptation Analysis

The identification of differences among application system in the domain [GILR89].

Aggregation

See Whole-Part Structure

Application

(1) A working system which provides a set of general services for solving some type
of user problem [PRIE91a:91].

(2) Software designed to fulfill specific needs of a user [DOD92:3].

Application Domain

The knowledge and concepts that pertain to a particular computer application. Examples
include battle management, avionics, and nuclear physics [STARS].

Architecture

(1) The high-level design, concerned with the main components of a system and their
roles and interrelationships [OXFORD 1991:456].

(2) The specification of a system at a somewhat general level, including description
from the user interface, memory organization and addressing, I/O operation and control, etc. The
implementation of an architecture in members of a given computer family may be quite different,
yet all the members should be capable of running the same program. Common architecture
provides compatibility from the user’s viewpoint [OXFORD 1991:18].

(3) Describes the nature, configuration, and interconnection of the major pieces of an
area of interest.

(4) A set of software modules (usually defined hierarchically) and their interfaces that
define the structure of the software defined during design [DAVI90:372].

Artifact

An object, a structure, or a product.

Assembly Structure

See Whole-Part Structure

Attribute

(1) A defined property of an entity or object [OXFORD 1991:26].

(2) Any property, quality, or characteristic that can be ascribed to a person or thing
[Webster’s].

Examples: name, address, account number, unit cost

Behavior

(1) Action and response to stimuli [Webster’s].

(2) How an object acts and reacts, in terms of its state changes and message passing
[BOOC91:80].

Behavioral Model

A template that specifies the expected behavior (the objects reaction to stimuli) for an
instance of an object class [EMBL92:63].

Behavior Modeling

The objective of behavioral modeling is to understand and document the way each object
in a system (domain) interacts, functions, responds or performs ... describes what an object must
do within its environment ... records the object’s perceived states, the conditions and events that
cause it to change from one state to another, the actions it perform, the actions performed on it ...
and exceptions to normal behavior and real-time constraints imposed on object behavior
[EMBL92:60].

Bottom-up Approach

A domain analysis approach where low-level requirements, source code and
documentation from existing systems is analyzed to produce a preliminary vocabulary, a
taxonomy, a classification structure and standard description. Source code is reverse-engineered
to recover a design based on the existing system (s). This approach is used when old product
artifacts exist and developers may or may not be available [PRIE91a:19].

Class

A family introduced in the programming language, SIMULA. The class provides a form
of abstract data type (see data abstraction): it also provides the basis of the concept of object that
underlies object-oriented languages [Oxford 1991:71].

Examples: vehicle, aircraft, document

Classification

(1) A mapping of a collection of objects to a set of descriptive domain terms.

(2) The process of determining such a mapping.

Cohesion

A measure of the degree to which parts of program module are closely functionally
related. High cohesion means that each part is directed toward and essential for that module to
perform its required function, and that the module performs only that function. Low cohesion
might be due to convenience grouping of function that are unrelated by function, timing, logic,
procedure, or by sequence [Oxford 1991:78].

Commonality Analysis

The identification of similarities among application systems in the domain [GILR89].

Component

A component is one object or operation in the domain [NEIG81].

Concurrency

The progressing of two or more Activities in parallel.

Context

The interrelated conditions or environment in which the domain exits or occurs.

Context Diagram

The diagram that represent the interfaces at the highest, most abstract level of a domain.
It shows the primary purpose (process) of the domain, all domain terminators (i.e., objects
external to the domain under specification that communicate or otherwise interface with the
domain), and all the information flows between those terminators and the domain [DAVI90].

Coupling

A measure of the strength of the interconnections between modules of a program. A high
coupling would indicate strong dependencies between one module and another. Loose coupling
allows greater flexibility in the design and better traceability, isolation and correction of faults
[Oxford 1991:102].

Data Abstraction

The principle of defining a data type in term of the operations that apply to objects of the
type, with the operations that apply to object of the type, with the constraints that the values of
such objects can be modified and observed only by the use of the operations [Oxford, 1991:109].

Data Model

 A term used in a variety of situations with data storage at either a logical or physical
level, but usually the former. It normally implies a formally defined structure within which the
data may be represented [Oxford 1991:116].

Examples: ERDs, ERADs, semantics nets.

Data Modeling

The objective of this modeling technique is to understand and describe the "entities" and
their interrelationships within the context of the area of interest. The emphasis is to identify and
understand data before worrying about processing it [WHIT89]. Data modeling lacks
inheritance, service, and message concepts of the object-oriented methodologies [COAD91E].

Examples: entity-relationship modeling, entity-relationship-attribute modeling,
information modeling and semantic net modeling.

Data Type

An abstract set of possible values and the operations that may be performed on these
values of an object [BOOC90:519].

Domain

A set of current and future systems that shares a set of common requirements,
capabilities, and data. A logical grouping of related functions and objects. Often referred to as
problem domain, problem space, or problem area.

Domain Analysis

The domain engineering process that identifies, collects, organizes, and represents
domain information based on the study of existing systems, requirement specifications, domain
expertise, engineering knowledge, and emerging technology. The process by which information
used in developing software systems is identified, captured, and organized with the purpose of
making it reusable [PRIE91a:17].

Domain Analyst

A person who conducts the domain analysis process. Their primary responsibilities
include: knowledge acquisition, analysis and organization of information, and generation of
domain products.

Domain Artifact

Any type or piece of domain-relevant information or knowledge that can be used to
determine how to implement software solutions to domain problems. Domain artifacts include,
but are not limited to, common business practices in the domain, and regulations, policies and
directives governing the domain. Artifacts may be acquired from existing system documentation
and source code, technical literature and trade journals, system surveys and questionnaires,
technology newsletters and conferences, and applicable domain expertise in engineering
disciplines such as systems analysis and design.

Domain Classification Scheme

A framework for domain-relevant terms that provides a structure (guideline) for
identifying and describing pertinent characteristics of the respective domain components.

Domain Design

The domain engineering process that uses domain analysis products to construct generic
architectures that facilitate construction of new system in the domain.

Domain Engineering

The encompassing system engineering discipline that includes identification (domain
analysis), design (domain design), and the construction (domain implementation) of reusable
components to address the problems of system and subsystem development.

Domain Expert

A person who has a good understanding of the capabilities and requirements for a family
of application (s) or encapsulated problem area of interest. Domain experts, including system
users, developers and maintainers, are consulted to determine application boundaries, refine and
organize domain-specific concepts and vocabulary, provide rationales for specification and
implementation concepts, and validate domain products.

Domain Implementation

The domain engineering Activities that use the products of domain analysis and domain
design to construct assets for future reuse.

Domain Model

Identifies entity classed, inter-entity relationships, and operations on entities, which are
common to most systems in a given problem domain [Oxford 1991:142]. The domain model
provides the generic specifications for systems in the domain. Specifications for specific systems
in the domain can be instantiated from the domain model to adapt unique, local requirements
more rapidly and correctly.

Domain Modeling

The software engineering activity that develops or constructs a representation of a
problem domain that exhibits the essential properties and behavior of the problem domain.

Domain-Specific Software Architecture (DSSA)

A specification for assemblage of software components that are specialized for a
particular class of tasks (domain); generalized for effective use across that domain; composed in
a standardized structure (topography); and effective for building successful applications
[METT92]. A DSSA provides the common characteristics for the preliminary design of systems
and software in a domain.

Domain Specifications

(1) A precise statement of the effects that the systems of the domain are required to
achieve. Specifications should focus on what is to be done, rather than how it is to be done.

(2) The elicitation, capture and expression of requirements for a system (domain)

comprising hardware, software, and people [Oxford 1991:431].

(3) A description of the components or objects of the domain in terms of structure,
context, attributes and services.

Entity

Any item that can be named or denoted [Oxford 1991:156].

Entity-Relationship Diagram

See ERA Diagram.

Entity-Relationship Model

See ERA Diagram.

Entity-Relationship-Attribute Diagram

See ERA Diagram.

Entity-Relationship-Attribute Model

See ERA Diagram.

Encapsulation

A principle, used when developing and overall program structure, that each component of
a program should encapsulate or hide a single design decision ... the interface to each module is
defined in such a way as to reveal as little as possible about its inner workings [Oxford, 1991].
See Information Hiding.

ERD

See ERA Diagram.

ERA Diagram

A diagrammatic notation for describing and documenting data items and the relationships
between data items, using an ERA model [Oxford 1991:159].

ERA Model

A model of a set of data relationships in terms of the entities, relationships, an attributes.
Entities have attributes and have relationships with other entities [Oxford 1991:159].

Facet

(1) Any definable aspect that makes up a subject or object [Webster’s].

(2) In terms of a component’s classification, an attribute of the component (e.g.,
component type, function, object, language, data representation, unit type, certification level, and
environment).

Facet Term

An attribute used to describe a facet of a software component (e.g., implementation, add,
number, add, integer, subprogram, level_1, Sun/UNIX).

Finite State Machine (FSM)

A virtual machine that can be in any one of a set of finite states and whose next states and
outputs are functions of inputs and current states only. It is often useful to describe the behavior
of a complex system as if it were and FSM [DAVI90:374].

Functional Clustering

(1) Cluster Analysis: A technique for grouping a set of similar elements and/or
functions on the basis of observed qualitative and/or quantitative measurements, usually several
variables [Oxford 1991:73].

(2) Bottom-up Development: Initially, each object is classified according to one
specific category. Then, these categories are grouped based on the sharing of object attributes
and/or services. The process of grouping and regrouping objects continues until the classes and
hierarchies are refined [AUER88].

Gen-Spec Structure

See Generalization-Specialization Structure

Generalization-Specialization Structure

A superset object class is called generalization, and a subset object class is called
specialization. Example: a FA-18 aircraft is a specialization (subset) of the generalization
(superclass) Aircraft. The subclass FA-18 inherits attributes and services from its superclass
Aircraft.

High-Domain Categories of Components

Those elements identified by the domain expert as having the greatest potential for reuse.

Horizontal Reuse

Reuse opportunities shared across multiple domains.

Information Hiding

A principle, used when developing and overall program structure, that each component of
a program should encapsulate or hide single design decisions ... that are particularly difficult or
likely to change. This approach leads to modules that are readily understood, can be developed
independently and are easier to change [Oxford 1991:220].

Inheritance

(1) In a hierarchy of objects, an object generally has a parent object (superclass) at
the next higher level in the hierarchy and one or more child objects (subclass) at the next lower
level. ...Inheritance is a means by which characteristics of objects can be replicated and
instantiated in other objects. Inheritance is both static by abstract data type and dynamic by
instantiation and value [Oxford 1991:222].

(2) A mechanism for expressing similarity among Classes, simplifying definition of
Classes similar to one (s) previously defined. It portrays generalization and specialization,
making common Attributes and Services explicit within a Class hierarchy [COAD91E].

Instance Connection

An instance connection is a model of problem domain mapping (s) that one object needs
with other objects, in order to fulfill its responsibilities ... Instance connections model association
[COAD91E:127]. This association depicts cardinality relationships between objects.

Interface

A point of interconnection between two different physical or logical units.

Knowledge Base

A logical collection of information in a particular domain that has been formalized in the
appropriate representation with which to perform reasoning ... A dynamic knowledge base is
used to store information relevant to solving a particular problem and varies from one problem-
solving session to the next [Oxford 1991:245].

Message

A message is a specification of one of an object’s manipulations ... procedures of an
object are activated by messages sent to the object by another object ... the basic control structure
is message passing [Oxford 1991:312].

Message Connection

A message connection models the processing dependency of an object, indicating a need
for services in order to fulfill its responsibilities [COAD91E:149].

Model

(1) M is a model of a system S if M can be used to answer a well-defined set of
questions about S to a tolerance adequate for stated purpose [DAVI90:376].

(2) Models are sets of representations that depict a condition or set of operations in
the real world ... Differs from a list of descriptions, in that it also describes the interrelationships
of the components [FREE91:389].

Modularity

The property of a system that has been decomposed into a set of cohesive and loosely
coupled modules. Modularity is one of the fundamental elements of the object model

[BOOC90:515].

Multiple Inheritance

An inheritance where the object receives its elements from more than one other object.

Object

An object is a package of information and a description of its manipulation ... and object
comprises a data structure definition and its defined procedures in a single structure ... objects are
instances of a class, each instance having its own private instance variables ... Each object can
have various attributes associated with it. Attributes can be local to that object or inherited from
the parent object [Oxford 1991:312].

Examples: Employee - in a Personnel System

Account - in a Financial System

Object-Behavioral Model

See Behavioral Model

Object-Interaction Model

Depicts the communication between objects through message connections.

Object Model

The graphical representations of the class & object structures, their behavior and their
interrelationships within the area of interest. The object model encompasses the principles of
abstraction, encapsulation, modularity, hierarchy, typing, concurrency and persistence
[BOOC90:25].

Examples: Coad Object Diagrams, Object-Relationship Model, Object-
Behavior Model.

Object Modeling

The objective of object modeling is to understand and describe and environment in terms
of its objects while embracing the concepts of abstraction, encapsulation, modularity, hierarchy,
typing, concurrency and persistence.

Object-Oriented (Development)

(1) An approach to developing software where every component represents and
object in the real world, its attributes, and its possible actions; objects can be grouped together
into classes to facilitate attribute and action assignments [DAVI90:376].

(2) a software engineering paradigm emphasizing the principles of abstraction,
encapsulation, modularity, hierarchy, typing, concurrency, and persistence [BOOC90:516].

Object-Oriented Analysis (OOA)

Same as object-oriented development but applied exclusively to analysis.

Object-Oriented Design (OOD)

Same as object-oriented development but applied to design [DAVI90:376].

Object-Relationship Model

See ERA Diagram.

Persistence

The property of an object by which its existence transcends time (i.e., the object
continues to exist after its creator ceases to exist) and/or space (i.e., the object’s location moves
from the address space in which it was created). Persistence is one of the fundamental elements
of the object model [BOOC90:517].

PDL See Program Design Language.

Precedented Domains

Domains that have existing software systems or subsystems which serve as examples for
subsequent development of the same or analogous software systems.

Problem Space

The delineation of what is to be done to resolve the problem (i.e., what types of data
describe the environment, what is to be accomplished, what are the end-user requirements, what
are the constraints and limitations), without defining how to do it (i.e., the analysis).

Procedural Abstraction

The principle that any operation that achieves a well-defined effect can be treated by its
users as single entity, despite the fact the operation may actually be achieved by some sequence
of lower-level operations [Oxford, 1991].

Process

A stream of activity.

Process Model

a description (graphical and textual) of the flow of data through the system and the
processing performed on the data. The emphasis is on inputs, outputs, processing, and the
relationship between processes [WHIT89]. The data flow diagram is the most popular depiction
of the process model.

Examples: Structured Systems Analysis and Design, Structured Analysis and Design

Technique, structured analysis and System Specification (i.e., most modern structured analysis
techniques).

Process Modeling

The method of analyzing and describing a system or domain in terms of the operations
and actions that convert input to output.

Program Design Language

A language, used for expressing program designs, that is similar to conventional high-
level programming language but emphasizes structure and intention rather than the ability to
execute programs expressed in the language.

Reuse

To put or bring into action or service again; to employ for or apply to a given purpose
again [COAD91E:12].

Reusable Component

A software element (including requirements, designs, code, test data, etc.) capable of
being used by a software development effort other than the one for which it was originally
developed.

Reusable Resource

A resource that is not rendered useless by being used [Oxford 1991:392].

Remembrance

The ability to retain a value or state information for future use.

Reference Model

A representation that allows people to agree on definitions, build common understanding
and identify issues for resolution. The model also provides a mechanism for identifying the key
issues associated with applications portability, scalability, and interoperability [DISA92a].

Requirements Forecasting

The estimation of future requirements.

Semantic Net

A means of representing relational knowledge as a labeled, directed graph. Each vertex of
the graph represents a relation between concepts ... a semantic net is sometimes regarded as a
graphical notation for logical formulae [Oxford:408].

Services

A service is a specific behavior that an object is responsible for exhibiting
[COAD91E:143].

Examples: Display_Menu, Calculate_Net_Pay, Print_Paycheck.

Solution Space

The delineation of how to resolve a problem (i.e., the design).

Software Architecture

A structural model representing the high-level design packaging of functions, data, their
relations, and control, to support the implementation of applications in a domain.

Software Reuse

The process of implementing new software systems using existing software components
and information.

State

(1) One of the possible conditions in which an object may exist, characterized by
definite quantities that are distinct from other quantities; at any given point in time
[BOOC90:518].

(2) A state represents an object’s status, phase, situation, or activity [EMBL92:60].

State Transition

The process of changing the state of an object is called a transition. events and conditions
cause the transition [EMBL92:61].

State Transition Diagram

A notation used to show the state space of an instance of a given class, the events that
cause a transition from one state to another, and the actions that result from a state change
[BOOC90:518].

Structure

(1) A manner of organization [Webster’s, 1977].

(2) Structure is an expression of problem-domain complexity, pertinent to the
system’s responsibilities [COAD91E:79].

(3) The concrete representation of the state with any other object, although all objects
of the same class do share the same representation of their state [EMBL92:518].

Examples: generalization-specialization or class structures:

Invoice: Sales_Invoice

Accoounts_Payable_Invoice

Translation: Sales_Invoice and

Accounts_Payable_Invoice
are specialized types of

Invoice

whole-part or assembly structure:

Invoice: Invoice_Header

Invoice_Body

Translation: Invoice_Header and
Invoice_Body are

components (parts) of the
Invoice type

Subclass

A class that inherits from one or more classes (which are called its immediate
superclasses) [BOOC90:518].

Subdomain

A subset (a partition) of the domain for which there is a defined, cohesive purpose
(operation).

Subject

An abstraction of classes and objects used to manage complexity and navigate effectively
within large OOA models.

Examples: User_Interface, Report_Writer

Superclass

The class from which another class inherits (which is called its immediate subclass)
[BOOC90:518].

System

(1) Anything we chose to regard (a) as an entity and (b) as comprising a set of related
components [Oxford 1991:455].

(2) [to place together (Greek)] A set or arrangement of things so related or connected
as to form a unit or organic whole [Webster’s].

Systems Families

A collection or grouping of interrelated software systems in the domain that share a set of
common characteristics.

Terminators

External sources and destinations of data [DAVI90].

Top-Down Approach

Domain analysis is performed from requirements and high-level designs of current and
new systems. These are analyzed for commonality [PRIE91a:19].

Triggers

The events and conditions that activate state transitions are called triggers [EMBL92:61].

Unprecedented Domain

A domain that lacks any prior software system development history on which to base new
development efforts. System development in unprecedented domains generally rely on emerging
technology [COHEN:5].

Validation

The process of evaluating software to determine compliance with specified requirements
[MIL-STD-2167A].

Verification

The process of evaluating the products of a given software development activity to
determine correctness and consistency with respect to the products and standards provided as
input to that activity [MIL-STD-2167A].

Vertical Reuse

Reusing assets from a given application into other applications (as-is or with some
modification) within the scope of the same domain.

Whole-Part Structure

A common type of object relationship. In this type of relationship set, an object
(aggregate or superpart) is composed of other objects (components or subparts) [EMBL92:44].

Examples: An engine, a gas tank, a steering wheel

(components) are parts of a car (aggregate).

APPENDIX C

REFERENCES AND SUGGESTED READINGS

(* Denotes discussion of a domain analysis methodology)

APPL92 Corporate Information Management, Process Improvement
Methodology For DoD Functional Managers, D. Appleton Company, Inc., 1992.

ARC92 Army Reuse Center, Domain Definition Report, Document No. 1213-65-
210/3, Contract No: DAEA26-87-D-2001, September 24, 1992.

ARNO88 Arnold,S.P. and Stepoway, S.L., The Reuse System: Cataloging
and Retrieval of Reusable Software, In Tutorial: Software Reuse - Emerging
Technology, Tracz, W. (Ed.), IEEE Computer Society Press, Washington, DC, pp
138-14l, 1988.

ARAN91 Arango, G;, (Shlumberger Laboratory for Comp. Science), Prieto-
Diaz, R. (S/w Productivity Consortium), Domain Analysis Concepts and Research
Directions, In Domain Analysis and Software Systems Modeling, IEEE Computer
Society Press, 1991.

ARAN89* Arango, G., "Domain Analysis - From Art Form to Engineering
Discipline, Proc. 5th International Workshop Software Specification and Design,
CA Press, Los Alamitos, California, PP 152-159, 1989.

ARAN88 Arango, Domain Engineering for Software Reuse, Technical
Report RCS-RTP8827, Dept. of Information and Computer Science, in of
California, Irvine, 1988.

AUER88 Auer, Ken and Adams, Sam. "Domain Analysis: Object Oriented
Methodologies and Techniques", Knowledge System Corp., position paper for
Domain Analysis Working Group Session at OOPSLA `88.

BAIL92a Bailin, S.C., CTA Incorporated, Katpur: Knowledge Acquisition
for Preservation of Tradeoffs and Underlying Rationales, 1992.

BA1L92b Bailin, S.C., "Towards a Case Based Software Engineering
Environment", Proceedings of the WISR `92 5th Annual Workshop on Software
Reuse, Palo Alto, California, October 26-29, 1992.

BA1L91* Bailin, S.C., CTA Incorporated, "A Knowledge Oriented Approach
to Domain Engineering", Symposium On Reuse and Re-engineering, National
Institute of Software Quality and Productivity, Nov. 1991.

BAIL89 Bailin, S.C., CTA Incorporated "An Object Oriented Requirements
Specification Method", Communications of the ACM, Vol. 29, No. 7, July 1987.

BAUE93 Bauer, D., A Reusable Parts Center, IBM Systems Journal, 32(4),
pp 620-624.

BOEH88 Boehm, Dr. Barry W, "A Spiral Model of Software Development
and Enhancement", Tutorial: Software Engineering Project Management, IEEE,
Washington, DC, 1988.

BOOC91 Booch, 6, Object Oriented Design with Applications,
Benjamin/Cummings Publishing Company, Inc., ISBN 0- 80s3-00910, 1991.

BOOC84 Booch, G., Software Engineering with Ada, second edition,
Benjamin/Cummings Publishing, 1987.

BOWE91 Bowen, G.M. "An Organized, Devoted, Project-Wide Reuse
Effort", Tri-Ada Proceedings, Oct. 1991.

BRAU91 Braun, C., "Domain Specific Software Architectures - Command
and Control", Proceedings of the WlSR `91 4th Annual Workshop on Software
Reuse, 1991.

BUHR90 Braun, R., Practical Visual Techniques in System Design with
Applications to Ada, Prentice Hall, 1990.

CAMP90 Daniel B. McNicholl, et. al., Common Ada Missile Packages -

Phase 3 (CAMP3): Developing and Using Ada Parts in Real-Time Embedded
Systems, Technical Report FO8635-88-C-0002, McDonnell Douglas Missile
Systems Company, St. Louis, MO, 27 April 1990.

COAD91a Coad, P., "Why Use Object-Oriented Development? A
Management Perspective", Journal of Object-Oriented Programming, pp 60-61,
Oct. 1991.

COAD9lb Coad, P, "Adding to OOA Results", Journal of Object-Oriented
Programming, pp 64-69, May 1991.

COADBlc Coad, P., "00A & OOD: A Continuum of Representation",
Journal of Object-Oriented Programming, pp 55-56, Feb. 1991.

COAD91d Coad, P., "New Advances in Object Oriented Analysis",
Journal of Object-Oriented Programming, pp 44-49, Jan 1991.

COAD91e Coad, P. and Yourdon, E., Object Oriented Analysis, Second
Edition, Prentice Hall, Englewood Cliffs, NJ, 1991.

C0HE89 Cohen, J. and Hignite, B., "GTE Software Reuse for Information
Management Systems", Position paper for the Reuse in Practice Workshop,
Pittsburgh, PA, July 11-13, 1989.

COHEN* Cohen, S., Process and Products for Software Reuse and
Domain Analysis, Software Engineering Institute.

C0LB92 Colbert, Edward, Analysis of Current Object-Oriented Methods,
vol., Absolute Software Co., Inc., January 17, 1992.

COLB89 Colbert, E., (Absolute Software Co., Inc.), "The Object Oriented
Software Development Method: A Practical Approach to Object-Oriented
Development", TRI-Ada Proceedings, October 1989.

CONK88* Conklin, J., and Begeman, M. L. "IBIS: A Hypertext Tool for
Exploratory Policy Discussions", Technical Report STP-082-88, MCC Corp.,
Austin TX, 1988.

DAVI90 Davis, Al, Software Retirements Analysis & Specification,
Prentice Hall, Englewood Cliffs, NJ, 1990.

DISA93 DISA/ClM Reuse Metrics Plan, Draft, April, 1993.

DISA92a Technical Reference Model for Information Management, Version
1.3, Defense Information Systems Agency Center for Information Management,
United States Department of Defense., July 31, 1992

DISA92b "DoD Software Reuse Initiative", Domain Analysis Workshop
Proceedings, DISA/CIM/XRE, Falls Church, VA, September 21-22, 1992.

DISA94 Procurement Domain Analysis and Design Pilot Project Report,

Version 2.4, Defense Information Systems Agency Center for Information
Management, United States Department of Defense., October 1994.

DOD92 Military Standard Software Development and Documentation,
MIL-STDSDD, September 4, 1992.

EMBL92 Embley, David W., Kurtz, Barry D., and Woodfield, Scott N.,
Object-Oriented System Analysis: A Model-Driven Approach, Yourdon Press,
Englewood Cliffs,, NJ, 1992.

FREE9l Alan Freedman, Computer Glossary, Prentice Hall, Eng1ewood
Cliffs, NJ, 1991.

FUTA88 Futatsugi, K, Goguen, J Messeguer, J and Okada, R.,
Parameterized Programming in 0BJ2, In Tutorial: Software Reuse Emerging
Technology, Tracz, W. (Ed.), IEEE Computer Society Press, Washington, DC, pp
337-346, 1988.

G1LR89 Gilroy, K., Comer, E., Grau, and Merlet, P., Impact of Domain
Analysis on Reuse Methods, Software Productivity Solutions, Inc., Final Report
C04-087LD-0001-00, U.S. Army, Communications Electronic Command, Ft.
Monmouth, NJ, November 1989.

GOLD89 Golden, WasiI, and Harken, The Analytic Hierarchy Process, New
York, New York, 1989.

GUER87 Guerrieri, E., Classification Schemes and Reusability
Measurements for Reusable Software Components", Proceedings of the
Workshop on Software Reuse, Rocky Mountain Institute of Software Engineering,
Boulder, CO, Oct. 14-16, 1987.

HARA86* Harandi, M. T. and Lubars, M. D., "Knowledge Base Software
Development: A, Paradigm and a Tool, Proceedings of the 1986 National
Computer Conference, AFIPS Press, Reston, VA, pp43-s0, 1986.

HOL190* Holibaugh, R., Domain Analysis Method, Rev Number 2.1,
Software Engineering Institute, Joint Integrated Avionics Working Group
(JIAWG), November 9, 1990.

ISCO91a* Iscoe, Neil, Arango, Guillermo and Williams, Gerry, "Domain
Modeling for Software Engineering (EDS Austin Research Laboratory, Technical
Report: AUS-0591-1, May 13, 1991)", Participants Proceedings, Domain
Modeling Workshop, 13th International Conference on Software Engineering,
Austin, TX, pp 1-4, 1991.

1SCO91b* Iscoe, Neil, Zheng-Yang Lui and Kar Yan Tam, "A Framework for
Understanding and Discussing Domain Modeling (EDS Austin Research
Laboratory, Technical Report: AUS-0s91-3, May 13, 1991)", Participants
Proceedings, Domain Modeling Workshop, 13th International Conference on

Software Engineering, Austin, TX, pp 5-13, 1991.

ISCO92* Iscoe, Neil, Zheng-Yang Lui and Guohui Feng, "Using Application
Knowledge in Software Synthesis: The Role of Domain Models," EDS
Austin Research Laboratory, Technical Report: AUS-0992-1, September
15, 1992.

JAWO90 Jaworski, A., Hills, F., Durek, T.A., Faulk, S., and Gaffney, J., A Domain
Analysis Process, Interim Report 90001-N, Software Productivity
Consortium, Herndon, VA, January 1990.

KANG90 Kang, K.S., Cohen, J., Hess, W., Novak, W., and Peterson, S., Feature-
Oriented Domain Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-
21. Software Engineering Institute, Carnegie-Mellon University,
Pittsburgh, PA, November 1990.

KANG89* Kang, R.C., "Features Analysis: An Approach to Domain Analysis",
Position Papers for the Reuse in Practice Workshop, Software
Engineering Institute, Pittsburgh, PA, July 1989.

KUNZ79 Kunz, W., and Rittel, H, "Issues as Elements of Information Systems,
Working Paper 131", Institut fur Grundlagen der Planung, I A.,
Universitat der Stuttgart, 1979.

LEE89 Lee, K.J., and Rissman, M., "Application of Domain-Specific
Software Architectures to Aircraft Flight Simulators and Training Devices",
Position paper for the Reuse in Practice Workshop, Pittsburgh, PA, July 11-13,
1989.

LEWI91 Lewis, J.A., Henry, S.M., Rafura, D.G., and Shulman, R.S.
(Virginia Tech), "An Empirical Study of the Object Oriented Paradigm and
Software Reuse", OOPSLA 91, pp 184-196.

LOND86 London, Philip E. and Martin S. Feather. Implementing
Specification Freedoms," Reading in Artificial Intelligence and Software
Engineering, Charles Rich and Waters (eds.), Morgan Raufman Publishers, Los
Altos, CA, 1986.

LOCK90 Lockemann, P.C. (University of Germany), Object-Oriented
Information Management, Decision Support Systems s, pp 79-102, 1989.

LUBA88' Lubars, Mitchell D., "Wide-Spectrum Support for Software
Reusability, In Tutorial: Software Reuse Emerging Technology,Tracz, W. (Ed.),
IEEE Computer Society Press, Washington, DC, pp 27s-281, 1988.

LUBA89* Lubars, Mitchell D.and Harandi, M.T., "Addressing Software
Reuse Through Knowledge Base Design,-" in Biggerstaff, Ted J and Perlis, Alan
J., editors, Software Reusability Volume II:Applications and Experience, Addison
Wesley, 1989.

LUBA91* Lubars, Mitchell D., "Domain Analysis and Domain Engineering in
IDeA, in Prieto-Diaz, R., and Arango, G., Domain Analysis and Software System
Modeling, IEEE Computer Society Press, Los Alamitos, CA, pp 163-178, 1991.

LUBA93 Lubars, Mitchell D., "Frameworks Versus Libraries: A Dichotomy
of Reuse Strategies, Proc. 6th Annual Workshop on Software Reuse,
Owego, NY, November 1993.

MART92 Martin, J., and Odel, J, Object Oriented Analysis and Design,
Prentice Hall, Englewood Cliffs, NJ, 1992.

MCCA8s* McCain, R., "Reusable Software Component Construction a
Product Oriented Paradigm", Proc. 5th AiAA/ACM/NASA/IEEE Computers in
Aerospace Conference, Long Beach California, pp 12s-13s, 198s.

MCKA93* McKay, Dr. Charles, Presentation of Recommended Approach to
Risk Management for Reusable Objects Software Environment (ROSE)

Project, University of Houston - Clear Lake, TX, January, 1993.

METT92 Mettala, LTC Erik G., "Domain Specific Software Architecture"
presentation, Domain Analysis Workshop,DARPA/SISTO, 21 Sep 1992.

MOOR89* Moore, J.M. & Bailin S.C., Domain Analysis: Framework for
Reuse Technical Report, Computer Technology Associates, Rockville, MD,
October, 1989.

NEIG84* Neighbors, J., "The Draco Approach to Constructing Software
from Reusable Components", IEEE Trans. on Software Engineering, Vol. SE-10,
No. 20, pp s64-s73, September 1984.

NEIG81 Neighbors, James M., Software Construction Using Components,
University of California at Irvine Technical Report 160, 1981.

NORM91 Norman, J.R., "Object Oriented System Analysis: A Methodology
for the 1990s", Journal of Systems Mgmt., pp32-40, Jul. 1991.

Oxford, 1991 Dictionary of Computing, Oxford University Press, 1991.

PERR88* Perry, J.M. (GTE Government Systems Corporation), and Shaw,
M. (Carnegie Mellon University), "The Role of Domain Independence in
Promoting S/W Reuse: Architectural Analysis of Systems", In Position Papers for
the Reuse in Practice Workshop, Software Engineering Institute, Pittsburgh,
PA, July, 1989.

PETE91a Petersen, G., Requirements Analysis and Design Tool Report,
Software Technology Support Center (STSC), Hill Air Force Base, UT 84056,
1991.

PETE91b Petersen, G., Software Reengineering Tool Report, Software
Technology Support Center (STSC), Hill Air Force Base, UT 84056, 1991.

PETE89 Peterson, A.S., "Coming to Terms with Terminology for Software
Reuse", Position paper for the Reuse in Practice Workshop, Pittsburgh,
PA, July 11-13, 1989.

P1PE92 Joanne Piper, "DoD Software Reuse Vision & Strategy",
CrossTalk Journal of Defense Software Engineering, No. 37, pp2-8 Software
Technology Support Center, Hill Air Force Base ,UT, October 1992.

PR1C92 Price, G., Daich, G., Murdock, D., Hidden E., Test Preparation,
Execution, and Analysis Tools Report, Software Technology Support Center
(STSC), Hill Air Force Base, UT 840s6, April 1992.

PR1E9la Prieto-Diaz, R., Reuse Library Process Model, Final Report,
STARS Reuse Library Program, Contract F19628-88-D-0032, Task IS40,
Electronic Systems Division, Air Force Systems Command, USAF, Hanscom
AFB, MA 01731, March 1991.

PR1E9lb Prieto-Diaz, R., "A Domain Analysis Methodology", Proceedings
of the Workshop on Domain Modeling, pp 138-140, 13th International

Conference on Software Engineering, Austin, TX, May 13, 1991.

PR1E9lc Prieto-Diaz, R., and Arango, G., Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, Los Alamitos, CA 1991.

PR1E88 Prieto-Diaz, R, and Jones, G.A., Breathing New Life Into Old
Software, In Tutorial: Software Reuse Emerging Technology, Tracz, W (Ed.),
IEEE Computed Society Press, Washington, D.C, pp 152-160, 1988.

PR1E87* Prieto-Diaz, R., "Domain Analysis for Reusability, Proceedings of
COMPSAC 87: The Eleventh Annual International Computer Software &
Applications Conference, Tokyo, Japan, pp 23-29, IEEE Computer Society,
Washington, DC, Oct. 1987.

QUAN88 Quanrud, Richard B., Generic Architecture Study, Report 34s1-4-
14/2, SofTech, Inc., January 22, 1988.

RUMB91 Rumbaugh, J et al.., Object Oriented Modeling and Design,
Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.

SAAT91 Saaty; Andvargas, The Logic of Priorities and Logic Planning,
RWS Publication, Pittsburg, PA, 1991.

SAAT90 Saaty, Andvargas, The Analytic Hierarchy Process, Pittsburg, PA
1990.

SE1D92 Seidewitz, E., Stark, M., Principles of Object Oriented Software
Development with Ada, Millennium System Inc., 1992.

SHLA89* Shlaer, S. & Mellor, SJ. (Proj. Technology, Inc.), "An Object
Oriented Approach to Domain Analysis", ACM SIGSOFT, Software Engineering

Notes, Vol. 14, pp 66-77, 5 Jul. 1989.

SITT92 Sittenauer, C., Olsem, M., Murdock, D., Reengineering Tool
Report, Software Technology Support Center (STSC), Hill Air Force Base, UT
840s6, July 1992.

THEO93 Theofanos, Mary F. A Comparative Review of the Domain
Analysis Guidelines for the Defense Information Systems Agency, Data

Systems Research and Development Program, Technical Operations, Martin
Marrietta Energy System, Inc., February 1993.

VIT90* Vitaletti, W. and Guerrieri, E. (SofTech), "Domain Analysis within
the ISEC RAPID Center", Proceedings of the Eighth Annual National Conference
on Ada Technology, Pages 460-470, US Army Communications Electronics
Command, Ft. Monmouth, N.J., March 1990.

WALL92 Wallnau, Kurt (Paramax), "An Introduction to CARDS",
CrossTalk Journal of Defense Software Engineering, No. 36, pp30-31

Software Technology Support Center, Hill Air Force Base UT, September
1992.

Webster's Webster's New Collegiate Dictionary, G. & C. Merriam Company,
Springfield, Mass., 1981.

WHIT89 Whitten, J., Bentley, L., and Barlow, V., Systems Analysis and
Design Methods, Irvin Press, Homewood, IL, 1989.

YOUR89 Yourdon, Edward., Modern Structured Analysis, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1989.

APPENDIX D

HOW TO READ IDEF DIAGRAMS

1. IDEF IS FOR UNDERSTANDING SYSTEMS VIA MODELING

IDEF is a technique that enables people to understand complex systems, and enables them to
communicate their understanding to others.

As used here, a "system" may be defined as any combination of machinery (hardware) data and
people, working together to perform a useful function. IDEF may be applied in planning, analysis, design,
project management, or whenever documented understanding of a complex subject is useful. The result of
applying IDEF is a "model" that shows, in a series of diagrams, the understanding gained.

2. "TOP-DOWN" ORGANIZATION OF THE MODEL

The diagrams in a model are organized in a hierarchic and modular "top-down" fashion, showing
the breakdown of the system into its component parts. Application of IDEF starts with the most general or
abstract description of the system to be produced. If this description is contained in a single "module",
represented by a box, that box is broken down into a number of more detailed boxes, each of which
represents a component part. The component parts are then detailed, each on another diagram. Each part
shown on a detail diagram is again broken down, and so forth, until the system is described to any desired
level of detail. Lower level diagrams, then, are detailed breakdowns of higher level diagrams. At each stage
of breaking down the system, the higher level diagram is said to be the "parent" or overview of the lower-
level "detail" diagrams.

3. DIAGRAMS ARE INDEXED BY NODE NUMBERS

In an IDEF diagram, the component parts are shown as numbered boxes. A diagram should have
no more than six boxes. Each box is detailed in one diagram at the next lower level until a sufficient level
of detail is reached.

The place of each diagram in a model is indicated by a "node number", derived from the
numbering of boxes. For example, A21 is the diagram which details box 1 on the A2 diagram. Similarly,
A2 details box 2 on the A0 diagram, which is the top diagram of the model. This hierarchy may be shown
in an index of diagram names and their node numbers called "node index". The node index serves as a table
of contents for a model.

The example shown below says that providing develop system (A0) is broken down into three
sub-functions, A1 through A3. Design system (A2) is further broken down into three, more detailed sub-
functions, (A21 through A23).

Levels of Diagrams
Corresponding Node Index

A-0 Develop System

A0 Develop System

A2 Design System

4. DIAGRAMS CONSIST OF LABELED BOXES AND
ARROWS

In IDEF, boxes represent components in the breakdown,
and arrows represent relationships between these components.
Descriptive labels are written inside each box and along each arrow
to describe their meaning. The notation is kept simple to permit easy
reading with little special training.

The following is a sample IDEF diagram. Notice that the
boxes represent the breakdown of activities or functions performed
by the system and are named by verbs. Arrows, which represent
objects or information are labeled with nouns. This emphasizes
system functions and is called actigram. It is the usual kind. When
data or objects are emphasized the boxes are labeled with nouns and
the arrows are verbs. This type of diagram is called a datagram.

5. BOX AND ARROW SYNTAX

The sample IDEF diagram shows that the descriptive names and labels convey the box and arrow
contents to the reader.

In addition to its label, the side at which an arrow enters or leaves a box shows its role as an input,
control, output, or mechanism for the box.

Arrows may branch or be
joined. The branches may each
represent the same thing, or
different things of the same general

type.

6. ARROWS SHOW THE CONNECTION BETWEEN PARENT AND DETAIL DIAGRAM

Some arrows show both their source and destination boxes on the same diagram, while other
arrows have one end unconnected. The unconnected arrows represent inputs, controls, or outputs of the
parent box. To find the source or destination of these unconnected arrows, the reader must locate the
matching arrows on the parent diagram. All such unconnected arrows must continue on the parent for the
diagrams to be complete.

Although arrow connections from parent boxes to detail diagrams may be obvious from the labels,
a special notation allows readers to do the match quickly. The letter I, C, O, or M is written near the
unconnected end of the arrow on the detail diagram, to identify that the arrow is shown as an Input,
Control, Output, or Mechanism on the parent box. To pinpoint the arrow more precisely, this letter is
followed by a number giving the relative position at which the arrow is shown entering or leaving the
parent box, numbering left to right and top to bottom. For example, "C3" written on an arrow in the detail
diagram indicates that this arrow is shown as the third control arrow entering the parent box. These
identifications are written on the matching arrows of the detail diagram.

Using this letter/number matching scheme, an arrow may have a different (but compatible)
descriptive arrow label on the parent diagram and the detail diagram, if appropriate.

Also, an arrow shown as control or as input on a parent diagram is not limited to the same role on
a detail diagram (for example, C2 on the parent box appears as an input to box 1 on its detail diagram in the
example below).

In very special cases, an unconnected arrow on a detail diagram has no matching arrow on its
parent, or vice versa. In this case, the arrow head or tail is
shown enclosed in parentheses.

Inputs (on the left) are transformed into outputs (on
the right). Controls (on the top) govern the way the
transformation is done. Mechanisms (on the bottom)
indicate the means by which the function is performed. A
"mechanism" (or support) might be a person or a committee

or a machine or a process.

Arrows represent single things or general classes of objects or information. The arrow label
describes what the arrow represents.

The arrow structure of an IDEF diagram represents a constraint relationship among the boxes. It
does not represent flow of control or sequence. The arrows entering a box show all that is needed by the
box to perform its function. Therefore, the box is constrained by its input and control arrows.

An output of one box may satisfy some or all of the input or control conditions required by one or
more other boxes. It is not necessary that each and every box have input and control and output. Also,

several boxes can be
performing their functions
simultaneously.

APPENDIX E

TENA IDEF
DIAGRAMS

APPENDIX F

TOOL OVERVIEW

APPENDIX G

SYSTEM QUESTIONNAIRE

